• Title/Summary/Keyword: MATLAB Simulation

Search Result 1,410, Processing Time 0.027 seconds

Localization Algorithm in Wireless Sensor Networks using the Acceleration sensor (가속도 센서를 이용한 무선 센서 네트워크하에서의 위치 인식 알고리즘)

  • Hong, Sung-Hwa;Jung, Suk-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1294-1300
    • /
    • 2010
  • In an environment where all nodes move, the sensor node receives anchor node's position information within communication radius and modifies the received anchor node's position information by one's traveled distance and direction in saving in one's memory, where if there at least 3, one's position is determined by performing localization through trilateration. The proposed localization mechanisms have been simulated in the Matlab. In an environment where certain distance is maintained and nodes move towards the same direction, the probability for the sensor node to meet at least 3 anchor nodes with absolute coordinates within 1 hub range is remote. Even if the sensor node has estimated its position with at least 3 beacon information, the angle ${\theta}$ error of accelerator and digital compass will continuously apply by the passage of time in enlarging the error tolerance and its estimated position not being relied. Dead reckoning technology is used as a supplementary position tracking navigation technology in places where GPS doesn't operate, where one's position can be estimated by knowing the distance and direction the node has traveled with acceleration sensor and digital compass. The localization algorithm to be explained is a localization technique that uses Dead reckoning where all nodes are loaded with omnidirectional antenna, and assumes that one's traveling distance and direction can be known with accelerator and digital compass. The simulation results show that our scheme performed better than other mechanisms (e.g. MCL, DV-distance).

A Small-area Hardware Implementation of EGML-based Moving Object Detection Processor (EGML 기반 이동객체 검출 프로세서의 저면적 하드웨어 구현)

  • Sung, Mi-ji;Shin, Kyung-wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.12
    • /
    • pp.2213-2220
    • /
    • 2017
  • This paper proposes an efficient approach for hardware implementation of moving object detection (MOD) processor using effective Gaussian mixture learning (EGML)-based background subtraction method. Arithmetic units used in background generation were implemented using LUT-based approximation to reduce hardware complexity. Hardware resources used for both background subtraction and Gaussian probability density calculation were shared. The MOD processor was verified by FPGA-in-the-loop simulation using MATLAB/Simulink. The MOD performance was evaluated by using six types of video defined in IEEE CDW-2014 dataset, which resulted the average of recall value of 0.7700, the average of precision value of 0.7170, and the average of F-measure value of 0.7293. The MOD processor was implemented with 882 slices and block RAM of $146{\times}36kbits$ on Virtex5 FPGA, resulting in 60% hardware reduction compared to conventional design based on EGML. It was estimated that the MOD processor could operate with 75 MHz clock, resulting in real-time processing of $800{\times}600$ video with a frame rate of 39 fps.

A RFID Tag Anti-Collision Algorithm Using 4-Bit Pattern Slot Allocation Method (4비트 패턴에 따른 슬롯 할당 기법을 이용한 RFID 태그 충돌 방지 알고리즘)

  • Kim, Young Back;Kim, Sung Soo;Chung, Kyung Ho;Ahn, Kwang Seon
    • Journal of Internet Computing and Services
    • /
    • v.14 no.4
    • /
    • pp.25-33
    • /
    • 2013
  • The procedure of the arbitration which is the tag collision is essential because the multiple tags response simultaneously in the same frequency to the request of the Reader. This procedure is known as Anti-collision and it is a key technology in the RFID system. In this paper, we propose the 4-Bit Pattern Slot Allocation(4-BPSA) algorithm for the high-speed identification of the multiple tags. The proposed algorithm is based on the tree algorithm using the time slot and identify the tag quickly and efficiently through accurate prediction using the a slot as a 4-bit pattern according to the slot allocation scheme. Through mathematical performance analysis, We proved that the 4-BPSA is an O(n) algorithm by analyzing the worst-case time complexity and the performance of the 4-BPSA is improved compared to existing algorithms. In addition, we verified that the 4-BPSA is performed the average 0.7 times the query per the Tag through MATLAB simulation experiments with performance evaluation of the algorithm and the 4-BPSA ensure stable performance regardless of the number of the tags.

A Design of Wideband Frequency Synthesizer for Mobile-DTV Applications (Mobile-DTV 응용을 위한 광대역 주파수 합성기의 설계)

  • Moon, Je-Cheol;Moon, Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.5
    • /
    • pp.40-49
    • /
    • 2008
  • A Frequency synthesizer for mobile-DTV applications is implemented using $0.18{\mu}m$ CMOS process with 1.8V supply. PMOS transistors are chosen for VCO core to reduce phase noise. The measurement result of VCO frequency range is 800MHz-1.67GHz using switchable inductors, capacitors and varactors. We use varactor bias technique for the improvement of VCO gain linearity, and the number of varactor biasing are minimized as two. VCO gain deterioration is also improved by using the varactor switching technique. The VCO gain and interval of VCO gain are maintained as low and improved using the VCO frequency calibration block. The sigma-delta modulator for fractional divider is designed by the co-simualtion method for accuracy and efficiency improvement. The VCO, PFD, CP and LF are verified by Cadence Spectre, and the sigma-delta modulator is simulated using Matlab Simulink, ModelSim and HSPICE. The power consumption of the frequency synthesizer is 18mW, and the VCO has 52.1% tuning range according to the VCO maximum output frequency. The VCO phase noise is lower than -100dBc/Hz at 1MHz at 1MHz offset for 1GHz, 1.5GHz, and 2GHz output frequencies.

Study of Cross Correlation Using DRS(Delayed Reference Sample) for Precision Time Measurement of Input Signal on Multilateration (다변측정감시시스템 신호 입력 시각 정밀 측정을 위한 DRS(Delayed Reference Sample)를 이용한 Cross Correlation 방안 연구)

  • Chang, Jae-Won;Lee, Sang Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.3
    • /
    • pp.244-250
    • /
    • 2018
  • Multilateration acquires the transponder signal of target from receivers installed on the ground and calculates the position of the target using the difference of the signal acquisition time of each receiver. One of the factors that influence the positioning accuracy of Multilateration using the TDOA calculation method is the error due to the precision measurement of signal input time. When measuring the signal input time at the receiver, the input signal is sampled using the reference clock of the receiver and a reference sample having the same sampling rate is applied to the cross correlation technique. Therefore, the accuracy of the signal input time is proportional to the reference clock. In this paper, the algorithm for precisely measuring the signal input time by performing cross correlation between the input signal of the receiver and DRS(Delayed Reference Sample) is proposed. In order to verify this, we implemented the pulse signal of the transponder that is transmitted from the target using Matlab. Through the simulation, cross correlation between the proposed DRS and the input signal was performed. From this result, the performance of the precise measurement of signal input time was analyzed.

X-Band FMCW RADAR Signal Processing for small ship (소형선박용 X-Band FMCW 레이더 신호처리부 설계 및 구현)

  • Kim, Jeong-Yeon;Chong, Kil-To;Kim, Tae-Yeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3121-3129
    • /
    • 2009
  • Conventional marine radar systems utilize pulse radar which is capable of high-power transmissions and is effective for remote detection purposes. A pulse radar is most commonly used on medium or large vessels due to its expensive installation and maintenance costs. I propose the use of a Frequency Modulated Continuous Wave (FMCW) radar system operated at low-power and high-resolution instead of the conventional pulse-radar based system. The transmitted and received signals of the FMCW radar system were theoretically analyzed and radar signal processing design and simulation experiments were performed to detect the range and speed. Intermediate Frequency (IF) signal mixed with virtual transmit and receive signals were generated to perform FMCW radar signal processing simulations where the IF signal underwent noise reduction through a lowpass filter. The maximum frequency was derived through the sample interval of the FFT size instead of using A/D converter. This maximum frequency was used to get the frequency range and frequency speed which were in turn used to calculate the range and speed. The virtual beat frequency generated using MATLAB is utilized to analyze the beat frequency used in the actual FMCW radar system signal processing. The differences in the range and speed of the beat frequency signals are processed and analyzed.

Study on Characteristics of the Forward Link Signal for the UHF RFID Reader (UHF 대역 RFID 리더의 순방향 링크 신호 특성에 관한 연구)

  • Kim, Do-Yun;Jang, Byung-Jun;Yoon, Hyun-Goo;Park, Jun-Seok;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.6 s.121
    • /
    • pp.602-611
    • /
    • 2007
  • In this paper, the forward link of UHF RFID system is modeled in accordance with the EPCglobal class 1 generation 2(EPCglobal C1G2) UHF Radio-Frequency Identity protocol specification at $860{\sim}960MHz$. Based on the constructed model, characteristics on the forward link signal for the EPCglobal C1G2 RFID reader are simulated with the help of a MATLAB softwarein order to extract the design parameters of a transmit digital filter which meets the Korean RFID regulations. Herein, the forward link model is consisted of PIE source coding, transmit digital filter, modulation, local oscillator, and antenna. From the simulation results, the ranges of three design parameters(roll-off factor, cutoff frequency, the number of tabs) for transmit digital filter are obtained with different modulation techniques and the Tari(type a reference interval) values. Finally, DSB/SSB-ASK modulation technique can not satisfy the EPCglobal C1G2 specification when Tari equals to $6.25{\mu}sec$ in a multiple-reader environment. Consequently this paper can provide a guideline for design parameters of a RFID reader as well as the basic scheme of analyzing frequency interference problems in RFID environments, including multiple-reader and dense-reader environments.

Optimal Wrist Design of Wrist-hollow Type 6-axis Articulated Robot using Genetic Algorithm (유전자 알고리즘을 이용한 손목 중공형 6축 수직다관절 로봇의 최적 손목 설계에 관한 연구)

  • Jo, Hyeon Min;Chung, Won Jee;Bae, Seung Min;Choi, Jong Kap;Kim, Dae Young;Ahn, Yeon Joo;Ahn, Hee Sung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.109-115
    • /
    • 2019
  • In arc-welding applying to the present automobile part manufacturing process, a wrist-hollow type arc welding robot can shorten the welding cycle time, because feedability of a welding wire is not affected by a robot posture and thus facilitates high-quality arc welding, based on stable feeding with no entanglement. In this paper, we will propose the optimization of wrist design for a wrist-hollow type 6-Axis articulated robot. Specifically, we will perform the investigation on the optimized design of inner diameter of hollow arms (Axis 4 and Axis 6) and width of the upper arm by using the simulation of robot motion characteristics, using a Genetic Algorithm (i.e., GA). Our simulations are based on $SolidWorks^{(R)}$ for robot modeling, $MATLAB^{(R)}$ for GA optimization, and $RecurDyn^{(R)}$ for analyzing dynamic characteristics of a robot. Especially $RecurDyn^{(R)}$ is incorporated in the GA module of $MATLAB^{(R)}$ for the optimization process. The results of the simulations will be verified by using $RecurDyn^{(R)}$ to show that the driving torque of each axis of the writs-hollow 6-axis robot with the optimized wrist design should be smaller than the rated output torque of each joint servomotor. Our paper will be a guide for improving the wrist-hollow design by optimizing the wrist shape at a detail design stage when the driving torque of each joint for the wrist-hollow 6-axis robot (to being developed) is not matched with the servomotor specifications.

Characteristics of loci on Line-to-Earth Voltage according to Earth Fault in Earthing System for Ships (선박의 접지 시스템에서 지락 고장에 따른 대지 전압 변동 특성)

  • Kim, Jong-Phil;Ryu, Ki-Tak;Lee, Yun-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.487-495
    • /
    • 2021
  • The voltages mainly used in ships are 450 [V], 6.6 [kV], and 11 [kV], and an earthed system is applied to ensure the stability of the power distribution system. In general, low-voltage ships using 450 [V] apply an unearthed system, while high-voltage ships using 6.6 [kV] or 11 [kV] use a high-resistance earthed system. When an earth fault occurs in a ship's power distribution system, the voltage of the healthy phase increases to the line-to-line voltage or higher, which causes an excessive impact on the insulation of the cable. Thus, analyzing this behavior is very important. In this paper, we investigate the characteristics of the line-to-earth voltage variation according to earth faults and a recognition procedure of a faulty phase using the symmetrical coordinate method for a high-resistance earthed system and unearthed system. A mathematical model of the line-to-earth voltage was derived through the symmetric coordinate method, and the ship voltage for simulations was selected as 6.6 [kV] and 450 [V]. A MATLAB simulation proved that this method can determine the highest increase of the line-to-earth voltage, which leads by 120° on the faulty phase, and it accurately judges the faulty phase in both earthed systems.

A Study on the Application of Hybrid Propulsion System for Fishing Vessels (어선용 복합 추진시스템 적용을 위한 연구)

  • Jung-Ho Noh
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1238-1243
    • /
    • 2022
  • The International Maritime Organization is at the forefront of strengthening gas emission regulations for ships globally. The Korean government needs to apply measures to reduce emissions, such as setting a basic roadmap for greenhouse gas reduction. In addition, there is an urgent need to introduce a new efficient propulsion system that can reduce gas emissions. This includes applications to fishing vessels, which account for 90.6% of the greenhouse gas emissions from ships sailing along domestic coasts. In this study, an electric-combined propulsion system applicable to domestic coastal fishing vessels was developed. The target ship to which the electric-combined propulsion system could be applied was selected. A simulation system was constructed using MATLAB/Simulink to compare the expected fuel consumption when applying the developed complex electric propulsion system to the propulsion system mounted on the selected target fishing vessel. Through simulations, the differences in fuel consumption between the mechanical propulsion system and the electric hybrid propulsion system (both when charging and not charging the battery on land) were confirmed. The results show that fuel consumption can be decreased by approximately 13% and 16% when applying the electric-combined propulsion system.