• Title/Summary/Keyword: MATLAB/SIMULINK

Search Result 1,129, Processing Time 0.025 seconds

DYNAMIC MODELING AND REACTION WHEEL CONTROLLER DESIGN FOR FLEXIBLE SATELLITE AOCS (유연모드를 가진 인공위성의 자세제어를 위한 동역학 모델링 및 반작용휠 제어기 설계)

  • 우병삼;채장수
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.386-394
    • /
    • 1997
  • In this study, a few of the modeling methods for flexible spacecraft were introduced and adopted to the modeling of a 3-axes stabilization satellite. The generated model was put into pre-built rigid body attitude control loop. A Lumped Parameter Model(Global Mode Model: GMM) was recommended for the absence of the Finite Element Method(FEM) model. Finally, GMM was compared with FEM in terms of designing a control filter. A 1st-order filter was designed to meet requirements of the controller since the new flexible model was applied, and that filter was added to motor controller and axis controller. MATLAB/Simulink was used as a tool for design and simulation of the control loop and filter.

  • PDF

Integrated Risk Management System for Intelligent Vehicle (지능형 자동차의 통합 위험 관리 시스템)

  • Yi, Kyongsu;Choi, Jaewoong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1503-1510
    • /
    • 2012
  • This paper presents an Integrated Risk Management System (IRMS), which is designed to integrate longitudinal and lateral collision avoidance systems. Indices representing longitudinal and lateral collision risks are designed. From the designed indices, an integrated control strategy is designed. A collision avoidance algorithm is designed to assist the driver in avoiding collisions by using a vehicle-driver-controller integrated linear model. The performance of the proposed algorithm is investigated via computer simulations conducted using the vehicle dynamics software CARSIM and Matlab/Simulink.

Optimization of Battery Power Distribution to Improve Fuel Consumption of Fuel Cell Hybrid Vehicle (연료전지 하이브리드 차량의 연비향상을 위한 배터리 동력분배 최적화)

  • Lee, Dong Sup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.397-403
    • /
    • 2013
  • The demand for eco-friendly and higher fuel economy vehicles has helped develop eco-friendly and fuel-efficient vehicles such as hybrid vehicles. In a hybrid vehicle, the change in the battery charge after driving should be added to the fuel consumption as the equivalent fuel usage based on its own characteristics. Thus, the fuel efficiency of a hybrid vehicle cannot be improved simply by increasing the battery capacity. In this study, I attempt to improve the total fuel economy of a hybrid vehicle, including the equivalent fuel consumption, by modeling a fuel cell hybrid vehicle using Matlab Simulink, analyzing the usage zone of the fuel cell with the existing control strategy, and optimizing the power distribution of the battery and fuel cell in the main usage zone of the fuel cell.

Control of powered descent phase for a Lunar lander using PID controller (PID 제어기를 이용한 달착륙선의 powered descent phase 유도제어)

  • Jo, Sung-Jin;Min, Chan-Oh;Lee, Dae-Woo;Cho, Kyeum-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.5
    • /
    • pp.408-415
    • /
    • 2011
  • The moon landing is composed of the de-orbit descent phase, powered descent phase, and the powered descent phase is divide into 3-sub phase of the braking, approach, final landing phase. In this paper, the lunar lander perform landing control using 3-sub phase of optimal trajectory. First, generate the reference trajectory using gauss pseudo-spectral method. Thereafter generate PID controller using altitude and velocity error in each direction. Finally the lunar lander landing system constitute using the Simulink of Matlab, and perform simulation.

Induction Motor Speed Controlf MRAS-Based Load-Torque Observer (모델 기준 적응 시스템(MRAS) 부하 토크 관측기를 이용한 유도 전동기의 속도 제어)

  • Cho, Moon-Taek;Lee, Chung-Sik;Lee, Se-Hun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.2
    • /
    • pp.119-123
    • /
    • 2007
  • This paper investigates a speed sensorless control of induction motor. The control strategy is based on MRAS(Model Reference Adaptive System) using load-torque observer as a reference model for flux estimation. The speed response of conventional MRAS controller characteristics is affected by variations of load torque disturbance. In the proposed system, the speed control characteristics using a load-torque observer control isn't affected by a load torque disturbance. Control algorithm that propose whole system through MATLAB SIMULINK because do modelling simulation result are presented to prove the effectiveness of the adaptive sliding mode controller for the drive variable load of induction motor. Therefore we hope to be extended in industrial application.

  • PDF

Design and Control Strategy of Fuel Cell Hybrid Power System for Light Electric Railway Vehicles (경전철용 연료전지 하이브리드 동력시스템 설계 및 제어)

  • Kim, Young-Ryul;Park, Young-Won
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.5
    • /
    • pp.772-777
    • /
    • 2009
  • The development of fuel cell hybrid power system, as a next generation power system to promote clean energy which will mitigate the continued global warming, has demonstratd a significant progress in passenger vehicle applications. Also, in case of railway vehicles in non-electrified railway lines, the adoption of fuel cell hybrid power system is being studied among well-known manufacturers. This paper introduces both the configuration and the control strategy of fuel cell hybrid power system to apply to a light electronic railway vehicle having a repeated driving pattern of acceleration, coasting and deceleration. The simulation results demonstrate the viability of the proposed power system design and its control strategy.

IPMSM Drives Using NPC 3-Level Inverters for the Next Generation High Speed Railway System (NPC 3-레벨 인버터를 적용한 차세대 고속전철 IPMSM의 구동)

  • Kwon, Soon-Hwan;Jin, Kang-Hwan;Kim, Sung-Je;Lee, Tae-Houng;Kim, Yoon-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.2
    • /
    • pp.129-134
    • /
    • 2012
  • In this paper, speed control of IPMSM drives for the next generation domestic high speed railway system using NPC 3-level inverters is presented. The NPC multilevel inverter is suitable for the high-voltage and high-power motor drive system because it has advantages in that the voltage rating of the power semiconductor devices and output current harmonics are reduced. For the speed control of IPMSM using NPC 3-level inverters, maximum torque control is applied in the constant torque region, and filed weakening control is applied in the constant power region. Simulation programs based on MATLAB/Simulink are developed. Finally the designed system is verified and their characteristics are analyzed by the simulation results.

Battery Cell SOC Estimation Using Neural Network (뉴럴 네트워크를 이용한 배터리 셀 SOC 추정)

  • Ryu, Kyung-Sang;Kim, Ho-Chan
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.333-338
    • /
    • 2020
  • This paper proposes a method of estimating the SOC(State of Charge) of a battery cell using a neural network algorithm. To this, we implement a battery SOC estimation simulator and derive input and output data for neural network learning through charge and discharge experiments at various temperatures. Finally, the performance of the battery SOC estimation is analyzed by comparing with the experimental value by Ah-counting using Matlab/Simulink program and confirmed that the error rate can be reduced to less than 3%.

Design of the Current and Speed Controller for the IPMSM based High Speed Railway Traction System (IPMSM이 적용된 차세대 고속철도 견인시스템의 전류 및 속도 제어기 설계)

  • Yi, Du-Hee;Jin, Kang-Hwan;Kwon, Soon-Hwan;Kim, Sung-Je;Kim, Yoon-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.8
    • /
    • pp.70-77
    • /
    • 2010
  • This paper presents the current and speed controller design procedure and their performance for the IPMSM based next generation high speed railway traction system. The next generation high speed railway system is a power distributed type and uses vector control method for a motor speed control. Since the speed and current controller gains of the vector control system directly affects to the transient characteristics and speed control capability, the systematic design of the controllers are required. In this paper the controllers are designed using the IPMSM based next generation high speed railway system parameters. Simulation programs based on Matlab/Simulink is developed. Finally the controller characteristics are analyzed by the simulation results.

Development of the Improved Dynamic Model of the Supercapacitor Considering Self-Discharge (자연방전을 고려한 개선된 슈퍼커패시터의 동특성 모델 개발)

  • Kim, Sang-Hyun;Lee, Kyo-Beum;Choi, Se-Wan;Choi, Woo-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.188-196
    • /
    • 2009
  • Due to its high power density, long cycle life and clean nature supercapacitors are widely used for improving the dynamic characteristics of the new and renewable energy sources and extending the battery run-time and life. In this paper improved dynamic model of the supercapacitor is developed by the electrochemical impedance spectroscopy technique. The developed model can be used to accurately estimate the dynamic behaviour of the supercapacitor and calculate the exact capacitance value at a certain state of charges. The model of the supercapacitor in the frequency domain is equivalently transformed into that in the time domain for Matlab/Simulink simulaton. The simulation data shows fine agreements with experimental results, thereby proving the validity and the accuracy of the developed model.