• Title/Summary/Keyword: MASS LOSS RATE

Search Result 400, Processing Time 0.03 seconds

Numerical Analysis of Heat Transfer in Multichannel Volumetric Solar Receivers (다채널 체적식 태양열 흡수기에서 열전달 수치해석)

  • Lee, Hyun-Jin;Kim, Jong-Kyu;Lee, Sang-Nam;Kang, Yong-Heack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1383-1389
    • /
    • 2011
  • The current study focuses on the consistent analysis of heat transfer in multichannel volumetric solar receivers used for concentrating solar power. Changes in the properties of the absorbing material and channel dimensions are considered in an optical model based on the Monte Carlo ray-tracing method and in a one-dimensional heat transfer model that includes conduction, convection, and radiation. The optical model results show that most of the solar radiation energy is absorbed within a very small channel length of around 15 mm because of the large length-to-radius ratio. Classification of radiation losses reveals that at low absorptivity, increased reflection losses cause reduction of the receiver efficiency, notwithstanding the decrease in the emission loss. As the average temperature increases because of the large channel radius or small mass flow rate, both emission and reflection losses increase but the effect of emission losses prevails.

Effects of the Geometry and Location of an Vertical Opening on the Fire Characteristics in the Under-Ventilated Compartment Fire (환기부족 구획화재에서 수직 개구부의 형상 및 위치가 화재특성에 미치는 영향)

  • Mun, Sun-Yeo;Park, Chung-Hwa;Hwang, Cheol-Hong;Park, Seul-Hyun
    • Fire Science and Engineering
    • /
    • v.27 no.3
    • /
    • pp.20-29
    • /
    • 2013
  • To investigate numerically the effects of geometry and location of vertical opening on the thermal and chemical fire characteristics in full-scale under-ventilated compartment fires, the ventilation factor ($A\sqrt{h}$) to estimate a theoretical maximum inflow of ambient air and the mass loss rate in a heptane pool fire were fixed for all cases. It was shown that variations in door geometry affected significantly the change in thermal and chemical characteristics inside the compartment. Variations in window location resulted in the complex change in additional fire characteristics including the fire duration time and recirculating flow structure. These results were analyzed in details by the multi-dimensional flow and fire characteristics including the vent flow and fuel/air mixing phenomena.

Near-Infrared Spectroscopy and Modeling of Luminous Blue Variables

  • Kim, Hyun-Jeong;Koo, Bon-Chul;Park, Yong-Sun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.152.1-152.1
    • /
    • 2011
  • We report preliminary results of long-slit near-infrared (NIR) spectroscopy of Luminous Blue Variables (LBVs) with moderate resolution of R ~ 2400. We obtained Jshort (1.04-1.26 micron) and Ks (2.02-2.31 micron) band spectra of 4 LBVs and 3 LBV candidates in Southern hemisphere using IRIS2, infrared imager and spectrograph, mounted on the 4-m Anglo-Australian Telescope. All targets are fairly bright in NIR so that we can obtain high signal-to-noise ratio for clear line detection and modeling. They are also widely distributed in the HR diagram so that we can compare the spectral properties of LBVs in different temperature and luminosity ranges. Among them, we present the results of two well-known LBVs AG Car and HR Car. Their spectra show similar properties with hydrogen, He I, and metallic lines such as Fe II and Mg II, most of them in emission. We discuss, in particular, the He I 1.083 micron lines formed in stellar wind because these two LBVs show large variation in their He I line intensities, compared to previous studies. Since the He I 1.083 line is known to be anticorrelated with the photometric variation of LBVs, strong line intensities with P-Cygni profiles in both stars indicate that they are now near the visual minimum phase. We model the obtained spectra using non-LTE atmosphere code CMFGEN of Hillier (1998) to derive stellar parameters such as wind velocity and mass loss rate, and discuss the long-term variability of stellar parameters of these LBVs. deduced from our otometric solution.

  • PDF

Fuel-Side Cold-Flow Test and Pressure Drop Analysis on Technology Demonstration Model of 75 ton-class Regeneratively-Cooled Combustion Chamber (75톤급 재생냉각 연소기 기술검증시제 연료 수류시험 및 차압 해석)

  • Ahn, Kyubok;Kim, Jong-Gyu;Lim, Byoungjik;Kim, Munki;Kang, Donghyuk;Kim, Seong-Ku;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.6
    • /
    • pp.56-61
    • /
    • 2012
  • Fuel-side cold-flow tests were performed on the technology demonstration model of a 75 ton-class liquid rocket engine combustion chamber for the first stage of the Korea space launch vehicle II. Pressure drop in the cooling channels of the combustion chamber was measured by changing fuel mass flow rate through a pressure regulating system. Pressure drop in each segment of the chamber could be obtained and a lot of pressure drop was caused by high flow velocity in the nozzle throat segment. The accuracy of a hydraulic analysis method for calculating a pressure loss in cooling channels could be verified by applying it to the cold-flow test conditions.

Desulfurization characteristics of low sulfur coal by mild pyrolysis (저온 열분해에 의한 저유황 석탄의 탈황 특성)

  • Park, KyeSung;Yun, ChaeKyung;Nam, YoungWoo
    • Clean Technology
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 2002
  • Mild pyrolysis of four different coals (two bituminous coals and two Korean antracite) was investigated. Desulfurization characteristics, weight loss and variation of heating values were studied. As operating variables of experiment, pyrolysis temperature($350{\sim}550^{\circ}C$), pyrolysis time(5~20 min.) and particle size(0~3.55mm) were examined. The maximum sulfur removal rate of bituminous coal and anthracite were 38% and 28%, respectively. The optimum mild pyrolysis conditions were 10~15 min for pyrolysis time and $450{\sim}550^{\circ}C$ for pyrolysis temperature. The mild pyrolysis was effective to reduce organic sulfur content. Heating values of char per mass after pyrolysis increased about 5% compared to raw coal. The effect of coal particle size on the desulfurization was not observed.

  • PDF

High-Temperature Corrosion Characterization for Super-Heater Tube under Coal and Biomass Co-firing Conditions (석탄-바이오매스 혼소에 따른 슈퍼히터 튜브 고온 부식 특성 연구)

  • Park, Seok-Kyun;Mock, Chin-Sung;Jung, Jin-Mu;Oh, Jong-Hyun;Choi, Seuk-Cheun
    • Journal of Power System Engineering
    • /
    • v.22 no.1
    • /
    • pp.79-86
    • /
    • 2018
  • Many countries have conducted extensive studies for biomass co-firing to enhance the durability of reactor on high-temperature corrosion. However, due to the complicated mechanisms of biomass co-firing, there have been limitations in accurately determining the current state of corrosion and predicting the potential risk of corrosion of power plant. In order to solve this issue, this study introduced Lab-scale corrosion system to analyze the corrosion characteristics of the A213 T91 material under the biomass co-firing conditions. The corrosion status of the samples was characterized using SEM/EDS analysis and mass loss measurement according to various biomass co-firing conditions such as corrosion temperature, $SO_2$ concentration, and corrosion time. As a result, the corrosion severity of A213 T91 material was gradually increased with the increase of $SO_2$ concentration in the reactor. When $SO_2$ concentration was changed from 0 ppm to 500 ppm, both corrosion severity and oxide layer thickness were proportionally increased by 15% and 130%, respectively. The minimum corrosion was observed when the corrosion temperature was $450^{\circ}C$. As the temperature was increased up to $650^{\circ}C$, the faster corrosion behavior of A213 T91 was observed. A213 T91 was observed to be more severely corroded by the effect of chlorine, resulting in faster corrosion rate and thicker oxide layer. Interestingly, corrosion resistance of A213 T91 tended to gradually decrease rather than increases as the oxide layer was formed. The results of this study is expected to provide necessary research data on boiler corrosion in biomass co-firing power plants.

Clinical and autonomic characteristics in patients with postural tachycardia syndrome (기립빈맥증후군 환자의 임상적 및 자율신경 특성)

  • Kim, Duk Ju;Kang, Sa-Yoon;Kim, Joong Goo
    • Journal of Medicine and Life Science
    • /
    • v.16 no.3
    • /
    • pp.96-100
    • /
    • 2019
  • Postural tachycardia syndrome (POTS) is common, although not so well-known variant of cardiovascular autonomic disorder characterized by an excessive heart rate increase on standing. POTS is probably underdiagnosed due to the heterogeneity in both presentation and etiology. This study aimed to evaluate the clinical and autonomic features in patients with POTS. We reviewed the medical records of patients with POTS. Medical records include onset age, sex, presenting symptoms, body mass index (BMI) and prognosis. All patients had an autonomic function and laboratory tests. Ninety-nine patients met the inclusion criteria for POTS (51.5% male; mean±SD age, 20.0±9.7 years; mean±SD, BMI 21.9±3.9). Common presenting symptoms were a brief loss of consciousness, dizziness, blurred vision and headache. Autonomic function tests showed abnormal quantitative sudomotor axon reflex testing in 20 patients of 99 POTS patients. The abnormal post-ganglionic sympathetic sudomotor function is generally considered to reflect a neuropathic form of POTS. In treatments, 83 patients were treated by non-pharmacological management including lifestyle changes and 16 patients required the initiation of pharmacological therapies. Most patients with POTS showed a relatively favorable prognosis. POTS is a chronic disease with a substantial subset of patients recovering within a few years after the initial presentation. Future efforts should focus on better understanding of POTS pathophysiology and designing randomized controlled trials for the selection of more effective therapy.

Transient performance behaviour of the CRW type UAV propulsion system during flight mode transition considering valve operation (CRW형식 무인항공기 추진시스뎀의 밸브 작동을 고려한 비행모드 전환에 따른 천이 성능특성 연구)

  • Kong Changduk;Park Jongha;Yang Sooseok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.3
    • /
    • pp.127-132
    • /
    • 2005
  • In order to investigate transient behavior, of the CRW(Canard Rotor Wing) type UAV(Uninhabited Aerial Vehicle) propulsion system during flight mode transition considering flow control valve operation, the propulsion system was modelled using SIMULINK commercial program. The valve system is to control the gas flow of the rotary duct system and the main duct system, and the analysis was performed with an assumption that the total gas mass flow of the main engine is the same as summation of the rotary duct flow and the main duct flow, and with consideration of valve loss, flow rate and effective area in valve angle variation. The performance analysis was carried out during flight mode transitions from the rotary flight mode to the fixed wing flight mode and vice versa mode at altitude of 1km, flight Mach number 0.1 and maximum engine rpm.

Effects of Clothing Material Dyed with Astringent Persimmon Extract upon Exercise-Induced Thermal Strain and Sensory Responses in a Warm Environment

  • Park, Shin-Jung;Shin, Hye-Sun;Chung, Hee-Chung
    • International Journal of Human Ecology
    • /
    • v.16 no.2
    • /
    • pp.1-9
    • /
    • 2015
  • This study investigated the effects of persimmon-dyed clothing materials upon thermophysiological responses and subjective comfort sensations during exercise and rest in a warm environment. Six healthy, untrained women participated in two separate testing sessions, with cotton materials dyed with astringent persimmon extract (DC) and undyed cotton materials (UDC). The physical characteristics associated with heat and moisture transfer were improved in DC; also, stiffness, anti-drapery stiffness and crispness in the primary hand values were higher in DC. The experimental protocol consisted of a 10-min rest, 15-min exercise on a treadmill (at ${7km{\cdot}h^{-1}}$) and 25-min recovery at $28{\pm}0.2^{\circ}C$ and $50{\pm}3%\;RH$. The results were as follows: When wearing DC rather than UDC, mean body temperature, heart rate, heat storage and body mass loss were significantly lower during the whole experimental period. Clothing microclimate temperature showed different profiles between the two clothing materials, being lower with DC than UDC during the first half of exercise and the second half of recovery. Clothing microclimate humidity was significantly lower with DC than UDC during the whole experimental period. When wearing UDC, subjects felt significantly warmer and less comfortable during exercise, and sensed greater humidity during exercise and recovery. These results suggest that eco-friendly clothing materials dyed with astringent persimmon extract can reduce exercise-induced heat load and improve subjective sensations when exercising and resting in a warm environment, due to greater heat dissipation from the body to the outside environment compared with undyed clothing materials.

Pressure Recovery in a supersonic ejector of a high altitude testing chamber (초음속 이젝터의 압력회복에 관한 연구)

  • Omollo, Owino George;Kong, Chang-Duk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.833-837
    • /
    • 2010
  • This study aims at finding an optimal exhaust diffuser design of a high altitude testing chamber for a low bypass turbofan engine (F404-402) with thrust pound force of 17,700 and air mass flow rate of 66kg/s ejecting at a speed of Mach 1.66. The final proposed ejector size has better pressure recovery characteristics and targets to reduce operational cost at engine performance testing. Conventional high altitude test chamber layout was adopted and first drawn in two dimensions using Autocad software so as to determine the gas path, the ejector frontal size was then determined from gas dynamics equations considering traditional gas ejection method where both the engine exhaust and cell cooling air are exhausted via the ejector. Modification to a smaller ejector with an alternative secondary cell cooling exhaust port was then performed and modelled in 3D using Solid Works software.

  • PDF