• Title/Summary/Keyword: MASS

Search Result 36,019, Processing Time 0.061 seconds

Mass Selection using Reflectron in gas cluster experment. (Gas Cluster 실험에서 Reflectron을 이용한 Mass Selection)

  • 김성수
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.2
    • /
    • pp.105-111
    • /
    • 2003
  • In order to find out whether a reflectron can be used as a mass selector in the gas cluster experiment, computer simulation are performed using the SIMION’ program. flight paths of energetic particles in the reflectron does not depend on their mass but energy. In the case of $(CO_2)n $ gas cluster, however, the position of clusters just after passing through the reflectron are spacially distributed with respect to the mass. The reason that the masses spacially distributes is the E/m ratio of clusters is constant, and it is the key reason that a reflectron can be used as a mass selector. Mass resolution does not depend on the cluster size and incident angle of clusters, and it is proportional to the incident position of clusters. This means that mass resolution can be enhanced by resizing the dimension of a reflectron. Therefore, it is concluded that a reflectron can be used as a mass selector with excellent mass resolution in the gas cluster experiment.

Low Muscle Mass and Depressed Mood in Korean Adolescents: a Cross-Sectional Analysis of the Fourth and Fifth Korea National Health and Nutrition Examination Surveys

  • Moon, Ji Hyun;Kong, Mi Hee;Kim, Hyeon Ju
    • Journal of Korean Medical Science
    • /
    • v.33 no.50
    • /
    • pp.320.1-320.8
    • /
    • 2018
  • Background: Muscle mass and muscle function are related to depressed mood in studies of adults. Like adults, Korean students are highly likely to suffer from decreased muscle mass due to social conditions. In this study, we evaluated the muscle mass status of Korean adolescents and assess the effect of muscle on depressive mood. Methods: A total of 1,233 adolescent boys and girls participants from the Korea National Health and Nutrition Examination Survey were enrolled in our study. Participants underwent dual-energy X-ray absorptiometry for assessment of appendicular muscle mass and completed questionnaires regarding depressed mood, stress, suicidal ideations, and attempts. Results: There was no difference in depressive mood according to muscle mass among boys (P = 0.634); girls with decreased muscle mass had a greater tendency for depressed mood compared to girls with optimal muscle mass (P = 0.023). After adjusting for age, waist circumference-to-height ratio, smoking status, alcohol consumption, frequency of physical activity, self-reported obesity, weight-loss efforts, and monthly household income, girls with low muscle mass (LMM) were 2.60 times more at risk of developing depression than girls with normal muscle mass (95% confidence interval [CI], 1.05-6.49; P = 0.040). This trend was similar for girls with LMM with obesity (95% CI, 1.00-11.97; P = 0.049). Conclusion: Adolescent girls who have insufficient muscle mass are more likely to report depressed mood than girls who have ideal muscle mass. Interventions for maintaining proper muscle mass are required.

Analysis of the mechanical properties and failure modes of rock masses with nonpersistent joint networks

  • Wu, Yongning;Zhao, Yang;Tang, Peng;Wang, Wenhai;Jiang, Lishuai
    • Geomechanics and Engineering
    • /
    • v.30 no.3
    • /
    • pp.281-291
    • /
    • 2022
  • Complex rock masses include various joint planes, bedding planes and other weak structural planes. The existence of these structural planes affects the mechanical properties, deformation rules and failure modes of jointed rock masses. To study the influence of the parameters of a nonpersistent joint network on the mechanical properties and failure modes of jointed rock masses, synthetic rock mass (SRM) technology based on discrete elements is introduced. The results show that as the size of the joints in the rock mass increases, the compressive strength and the discreteness of the rock mass first increase and then decrease. Among them, the joints that are characterized by "small but many" joints and "large and clustered" joints have the most significant impact on the strength of the rock mass. With the increase in joint density in the rock mass, the compressive strength of rock mass decreases monotonically, but the rate of decrease gradually decreases. With the increase in the joint dip angle in rock mass, the strength of the rock mass first decreases and then increases, forming a U-shaped change rule. In the analysis of the failure mode and deformation of a jointed rock mass, the type of plastic zone formed after rock mass failure is closely related to the macroscopic displacement deformation of the rock mass and the parameters of the joints, which generally shows that the location and density of the joints greatly affect the failure mode and displacement degree of the jointed rock mass. The instability mechanism of jointed surrounding rock is revealed.

Properties of Galaxies in Cosmic Filaments around the Virgo Cluster

  • Lee, Youngdae;Kim, Suk;Rey, Soo-Chang;Chung, Jiwon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.64.2-64.2
    • /
    • 2020
  • We present the properties of galaxies in filaments around the Virgo cluster with respect to their vertical distance from the filament spine. Using the NASA-Sloan Atlas and group catalogs, we select galaxies that do not belong to groups in filaments. The filament member galaxies are then defined as those located within 3.5 scale length from the filament spine. The filaments are mainly (~86%) composed of low-mass dwarf galaxies of logh2M∗/M⊙ < 9 dominantly located on the blue cloud in color-magnitude diagrams. We observe that the g - r color and stellar mass of galaxies correlate with their vertical distance from the filament spine in which the color becomes red and stellar mass decreases with increasing vertical filament distance. The galaxies were divided into two subsamples in different stellar mass ranges, with lower-mass (logh2M∗/M⊙ ≤ 8) galaxies showing a clear negative g-r color gradient, whereas higher-mass (logh2M∗/M⊙ > 8) galaxies have a flat distribution against the vertical filament distance. We observe a negative EW(Hα) gradient for higher-mass galaxies, whereas lower-mass galaxies show no distinct variation in EW(Hα) against the vertical filament distance. In contrast, the NUV - r color distribution of higher-mass galaxies shows no strong dependence on the vertical filament distance, whereas the lower-mass galaxies show a distinct negative NUV - r color gradient. We do not witness clear gradients of HI fraction in either the higher- or lower-mass subsamples. We propose that the negative color and stellar mass gradients of galaxies can be explained by mass assembly from past galaxy mergers at different vertical filament distances. In addition, galaxy interactions might be responsible for the contrasting features of EW(Hα) and NUV - r color distributions between the higher- and lower-mass subsamples. The HI fraction distributions of the two subsamples suggest that ram-pressure stripping and gas accretion could be ignorable processes in the Virgo filaments.

  • PDF

Improvement of protein identification performance by reinterpreting the precursor ion mass tolerance of mass spectrum (질량스펙트럼의 펩타이드 분자량 오차범위 재해석에 의한 단백질 동정의 성능 향상)

  • Gwon, Gyeong-Hun;Kim, Jin-Yeong;Park, Geon-Uk;Lee, Jeong-Hwa;Baek, Yung-Gi;Yu, Jong-Sin
    • Bioinformatics and Biosystems
    • /
    • v.1 no.2
    • /
    • pp.109-114
    • /
    • 2006
  • In proteomics research, proteins are digested into peptides by an enzyme and in mass spectrometer, these peptides break into fragment ions to generate tandem mass spectra. The tandem mass spectral data obtained from the mass spectrometer consists of the molecular weights of the precursor ion and fragment ions. The precursor ion mass of tandem mass spectrum is the first value that is fetched to sort the candidate peptides in the database search. We look far the peptide sequences whose molecular weight matches with precursor ion mass of the mass spectrum. Then, we choose one peptide sequence that shows the best match with fragment ions information. The precursor ion mass of the tandem mass spectrum is compared with that of the digested peptides of protein database within the mass tolerance that is assigned by users according to the mass spectrometer accuracy. In this study, we used reversed sequence database method to analyze the molecular weight distribution of precursor ions of the tandem mass spectra obtained by the FT LTQ mass spectrometer for human plasma sample. By reinterpreting the precursor ion mass distribution, we could compute the experimental accuracy and we suggested a method to improve the protein identification performance.

  • PDF

The Relationship Between Body Composition and Bone Mineral Density in Postmenopausal Women (폐경 후 여성에서 체성분과 골밀도와의 관계)

  • Chae, Jin-Wook;Kim, Il-Hoe;Kwon, Woo-Sung;Lee, Keun-Mi;Jung, Seung-Pil;Moon, Yong
    • Journal of Yeungnam Medical Science
    • /
    • v.20 no.1
    • /
    • pp.53-61
    • /
    • 2003
  • Background: Body weight is an important factor that influence the bone density in postmenopausal women except estrogen dificiency. However, different results are reported about the relationship between body composition and bone density in the postmenopausal women. We have studied the relationship between age, body weight, body mass index (BMI), waist hip ratio (WHR), muscle mass, fat mass, fat free mass and bone density. Materials and Methods: We have studied 127 persons of postmenopausal women who visited university medical center and examined the inbody 3.0 and Dual Energy X-ray Absorptiometry (DEXA) from Jan, 2001 to Jun, 2002. they didn't have any disease and didn't received hormone therapy, osteoporosis therapy or other medication that influence the bone density. Results: The numbers of study subjects is total 127 persons. Mean age is $56.9{\pm}5.14$, mean weight is $59.3{\pm}8.7kg$, mean BMI is $25.37{\pm}3.16(kg/m^2)$, mean fat mass is $20.02{\pm}5.05kg$, mean muscle mass is $37.49{\pm}4.50kg$, mean fat free mass is $39.80{\pm}4.70$, mean BMD is $0.828{\pm}0.148(g/cm^2$). In the result of linear regression analysis, age, height, weight, muscle mass, fat free mass, fat mass, BMI are significant determinants of BMD. In stepwise multiple regression analysis, age is the most significant determinant of BMD and besides age, fat free mass is the most significant determinant of BMD among body composition. Conclusion: In postmenopausal women, age, height, weight, BMI, muscle mass, fat free mass, fat mass are significant determinants of BMD and besides age, fat free mass is the most significant determinant of BMD among the body composition. So, diet and exercise that increase fat free mass will contribute to bone density increment.

  • PDF

Dynamic Responses and Fuzzy Control of a Simply Supported Beam Subjected to a Moving Mass

  • Kong, Yong-Sik;Ryu, Bong-Jo;Shin, Kwang-Bok;Lee, Gyu-Seop;Lee, Hong-Gi
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1371-1381
    • /
    • 2006
  • This paper deals with the active vibration control of a simply-supported beam traversed by a moving mass using fuzzy control. Governing equations for dynamic responses of a beam under a moving mass are derived by Galerkin's mode summation method, and the effect of forces (gravity force, Coliolis force, inertia force caused by the slope of the beam, transverse inertia force of the beam) due to the moving mass on the dynamic response of a beam is discussed. For the active control of dynamic deflection and vibration of a beam under the moving mass, the controller based on fuzzy logic is used and the experiments are conducted by VCM (voice coil motor) actuator to suppress the vibration of a beam. Through the numerical and experimental studies, the following conclusions were obtained. With increasing mass ratio y at a fixed velocity of the moving mass under the critical velocity, the position of moving mass at the maximum dynamic deflection moves to the right end of the beam. With increasing velocity of the moving mass at a fixed mass ratio ${\gamma}$, the position of moving mass at the maximum dynamic deflection moves to the right end of the beam too. The numerical predictions of dynamic deflection of the beam have a good agreement with the experimental results. With the fuzzy control, more than 50% reductions of dynamic deflection and residual vibration of the tested beam under the moving mass are obtained.

Control strategy of the lever-type active multiple tuned mass dampers for structures

  • Li, Chunxiang;Han, Bingkang
    • Wind and Structures
    • /
    • v.10 no.4
    • /
    • pp.301-314
    • /
    • 2007
  • The lever-type active multiple tuned mass dampers (LT-AMTMD), consisting of several lever-type active tuned mass dampers (LT-ATMD), is proposed in this paper to attenuate the vibrations of long-span bridges under the excitation directly acting on the structure, rather than through the base. With resorting to the derived analytical-expressions for the dynamic magnification factors of the LT-AMTMD structure system, the performance assessment then is conducted on the LT-AMTMD with the identical stiffness and damping coefficient but unequal mass. Numerical results indicate that the LT-AMTMD with the actuator set at the mass block can provide better effectiveness in reducing the vibrations of long-span bridges compared to the LT-AMTMD with the actuator set at other locations. An appealing feature of the LT-AMTMD with the actuator set at the mass block is that the static stretching of the spring may be freely adjusted in accordance with the practical requirements through changing the location of the support within the viable range while maintaining the same performance (including the same stroke displacement). Likewise, it is shown that the LT-AMTMD with the actuator set at the mass block can further ameliorate the performance of the lever-type multiple tuned mass dampers (LT-MTMD) and has higher effectiveness than a single lever-type active tuned mass damper (LT-ATMD). Therefore, the LT-AMTMD with the actuator set at the mass block may be a better means of suppressing the vibrations of long-span bridges with the consequence of not requiring the large static stretching of the spring and possessing a desirable robustness.