• Title/Summary/Keyword: MAPE

Search Result 261, Processing Time 0.031 seconds

Application of expert systems in prediction of flexural strength of cement mortars

  • Gulbandilar, Eyyup;Kocak, Yilmaz
    • Computers and Concrete
    • /
    • v.18 no.1
    • /
    • pp.1-16
    • /
    • 2016
  • In this study, an Artificial Neural Network (ANN) and Adaptive Network-based Fuzzy Inference Systems (ANFIS) prediction models for flexural strength of the cement mortars have been developed. For purpose of constructing this models, 12 different mixes with 144 specimens of the 2, 7, 28 and 90 days flexural strength experimental results of cement mortars containing pure Portland cement (PC), blast furnace slag (BFS), waste tire rubber powder (WTRP) and BFS+WTRP used in training and testing for ANN and ANFIS were gathered from the standard cement tests. The data used in the ANN and ANFIS models are arranged in a format of four input parameters that cover the Portland cement, BFS, WTRP and age of samples and an output parameter which is flexural strength of cement mortars. The ANN and ANFIS models have produced notable excellent outputs with higher coefficients of determination of $R^2$, RMS and MAPE. For the testing of dataset, the $R^2$, RMS and MAPE values for the ANN model were 0.9892, 0.1715 and 0.0212, respectively. Furthermore, the $R^2$, RMS and MAPE values for the ANFIS model were 0.9831, 0.1947 and 0.0270, respectively. As a result, in the models, the training and testing results indicated that experimental data can be estimated to a superior close extent by the ANN and ANFIS models.

Electricity Demand Forecasting for Daily Peak Load with Seasonality and Temperature Effects (계절성과 온도를 고려한 일별 최대 전력 수요 예측 연구)

  • Jung, Sang-Wook;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.5
    • /
    • pp.843-853
    • /
    • 2014
  • Accurate electricity demand forecasting for daily peak load is essential for management and planning at electrical facilities. In this paper, we rst, introduce the several time series models that forecast daily peak load and compare the forecasting performance of the models based on Mean Absolute Percentage Error(MAPE). The results show that the Reg-AR-GARCH model outperforms other competing models that consider Cooling Degree Day(CDD) and Heating Degree Day(HDD) as well as seasonal components.

A Study on Prediction of Attendance in Korean Baseball League Using Artificial Neural Network (인경신경망을 이용한 한국프로야구 관중 수요 예측에 관한 연구)

  • Park, Jinuk;Park, Sanghyun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.12
    • /
    • pp.565-572
    • /
    • 2017
  • Traditional method for time series analysis, autoregressive integrated moving average (ARIMA) allows to mine significant patterns from the past observations using autocorrelation and to forecast future sequences. However, Korean baseball games do not have regular intervals to analyze relationship among the past attendance observations. To address this issue, we propose artificial neural network (ANN) based attendance prediction model using various measures including performance, team characteristics and social influences. We optimized ANNs using grid search to construct optimal model for regression problem. The evaluation shows that the optimal and ensemble model outperform the baseline model, linear regression model.

Deep Neural Network Based Prediction of Daily Spectators for Korean Baseball League : Focused on Gwangju-KIA Champions Field (Deep Neural Network 기반 프로야구 일일 관중 수 예측 : 광주-기아 챔피언스 필드를 중심으로)

  • Park, Dong Ju;Kim, Byeong Woo;Jeong, Young-Seon;Ahn, Chang Wook
    • Smart Media Journal
    • /
    • v.7 no.1
    • /
    • pp.16-23
    • /
    • 2018
  • In this paper, we used the Deep Neural Network (DNN) to predict the number of daily spectators of Gwangju - KIA Champions Field in order to provide marketing data for the team and related businesses and for managing the inventories of the facilities in the stadium. In this study, the DNN model, which is based on an artificial neural network (ANN), was used, and four kinds of DNN model were designed along with dropout and batch normalization model to prevent overfitting. Each of four models consists of 10 DNNs, and we added extra models with ensemble model. Each model was evaluated by Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). The learning data from the model randomly selected 80% of the collected data from 2008 to 2017, and the other 20% were used as test data. With the result of 100 data selection, model configuration, and learning and prediction, we concluded that the predictive power of the DNN model with ensemble model is the best, and RMSE and MAPE are 15.17% and 14.34% higher, correspondingly, than the prediction value of the multiple linear regression model.

The Study for Estimating Traffic Volumes on Urban Roads Using Spatial Statistic and Navigation Data (공간통계기법과 내비게이션 자료를 활용한 도시부 도로 교통량 추정연구)

  • HONG, Dahee;KIM, Jinho;JANG, Doogik;LEE, Taewoo
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.3
    • /
    • pp.220-233
    • /
    • 2017
  • Traffic volumes are fundamental data widely used in various traffic analysis, such as origin-and-destination establishment, total traveled kilometer distance calculation, congestion evaluation, and so on. The low number of links collecting the traffic-volume data in a large urban highway network has weakened the quality of the analyses in practice. This study proposes a method to estimate the traffic volume data on a highway link where no collection device is available by introducing a spatial statistic technique with (1) the traffic-volume data from TOPIS, and National Transport Information Center in the Ministry of Land, Infrastructure, and (2) the navigation data from private navigation. Two different component models were prepared for the interrupted and the uninterrupted flows respectively, due to their different traffic-flow characteristics: the piecewise constant function and the regression kriging. The comparison of the traffic volumes estimated by the proposed method against the ones counted in the field showed that the level of error includes 6.26% in MAPE and 5,410 in RMSE, and thus the prediction error is 20.3% in MAPE.

A Study on the Comparison of Electricity Forecasting Models: Korea and China

  • Zheng, Xueyan;Kim, Sahm
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.6
    • /
    • pp.675-683
    • /
    • 2015
  • In the 21st century, we now face the serious problems of the enormous consumption of the energy resources. Depending on the power consumption increases, both China and South Korea face a reduction in available resources. This paper considers the regression models and time-series models to compare the performance of the forecasting accuracy based on Mean Absolute Percentage Error (MAPE) in order to forecast the electricity demand accurately on the short-term period (68 months) data in Northeast China and find the relationship with Korea. Among the models the support vector regression (SVR) model shows superior performance than time-series models for the short-term period data and the time-series models show similar results with the SVR model when we use long-term period data.

A Prediction of Demand for Korean Baseball League using Artificial Neural Network (인공 신경망 모형을 이용한 한국프로야구 관중 수요 예측)

  • Park, Jinuk;Park, Sanghyun
    • Annual Conference of KIPS
    • /
    • 2017.04a
    • /
    • pp.920-923
    • /
    • 2017
  • 본 연구는 기존의 수요 예측 등의 시계열 분석에서 주로 사용되는 ARIMA 모형의 어려움을 극복하고자 인공신경망(Artificial Neural Network) 모형을 이용하여 한국 프로 야구 관중 수를 예측하였다. 인공신경망의 가장 기본적인 종류인 전방향 신경망(Feedforward Neural Network)의 초모수(Hyperparameter) 선정에 그리드 탐색(Grid Search)을 적용하여 최적의 모형을 찾고자 하였다. 훈련 자료로는 2015년 3월부터 8월까지의 일별 KBO 관중 수 자료를 대상으로 하였고, 예측력 검증을 위해 2015년 9월 관중 수를 예측하여 실제 관측값과 비교하였다. 그 결과, 그리드 탐색법에서 최적 모형이라고 판단한 모형의 예측력은, 평균 절대 백분율 오차(MAPE) 기준으로 평균 27.14% 였다. 또한, 앙상블 기법에서 착안하여 오차율이 낮은 모형 5개의 예측값 평균의 MAPE는 평균 28.58% 였다. 이는 다중회귀와 비교해보았을 때, 평균적으로 각각 14%, 13.6% 높은 예측력을 보이고 있다.

Performance Analysis of an Anisotropic Magnetoresistive Sensor-Based Vehicle Detector (Anisotropic Magnetoresistive 센서를 이용한 차량 검지기의 성능분석)

  • Kang, Moon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.598-604
    • /
    • 2009
  • This paper proposes a vehicle detector with an anisotropic magnetoresistive (AMR) sensor and addresses experimental results to show the detector's performance. The detector consists of an AMR sensor and mechanical and electronic apparatuses. The AMR sensor, composed of four magnetoresistors, senses disturbance of the earth's magnetic field caused by a vehicle moving over the sensor and then produces an output indicative of the moving vehicle. This paper verifies performance of the detector on the basis of experimental results obtained from the field tests carried under the two traffic conditions on local highways in Korea. First, I show the vehicle counting performance on a low speed congested highway by comparing the vehicle counts measured by the detector with the exact counts. Second, both vehicle counts and average speeds calculated from the measured point-occupancy on another continuously free running highway are compared with the reference values obtained from a loop detector which has two independent loop coils, where I have used several performance indices including mean absolute percentage error (MAPE) to show the performance consistency between the two types of detectors.

Space Time Data Analysis for Greenhouse Whitefly (온실가루이의 공간시계열 분석)

  • 박진모;신기일
    • The Korean Journal of Applied Statistics
    • /
    • v.17 no.3
    • /
    • pp.403-418
    • /
    • 2004
  • Recently space-time model in spatial data analysis is widly used. In this paper we applied this model to analysis of greenhouse whitefly. For handling time component, we used ARMA model and autoregressive error model and for outliers, we adapted Mugglestone's method. We compared space-time models and geostatistic model with MSE and MAPE.

Comparison of forecasting models of disease occurrence due to the weather in elderly patients (기상에 따른 고령환자의 질병 발생빈도 예측모형 비교)

  • Lee, Seonjae;Yeo, In-Kwon
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.145-155
    • /
    • 2016
  • In this paper, we compare forecasting models for disease occurrences in elderly patients due to the weather. For the analysis, the medical data of aged patients released from Health Insurance Review and the weather data of the Korea Meteorological Administration are weekly and regionally merged. The ARMAX model, the VARMAX model and the TSCS regression model are considered to analyze the number of weekly occurrences of some diseases attributable to climate conditions. These models are compared with MSE, MAPE, and MAE criteria.