• 제목/요약/키워드: MAP kinase pathway

검색결과 110건 처리시간 0.022초

녹차 카테킨, Epigallocathechin Gallate (EGCG)의 흰쥐췌장종양 선 세포 AR42J의 MAP Kinase 세포 신호전달 기전을 통한 Neurogenin 3 발현에 미치는 영향 (Effect of EGCG on Expression of Neurogenin 3 via the MAP Kinase Signaling Pathway in AR42J Cells, a Rat Pancreatic Tumor Cell Line)

  • 김성옥;최원경
    • Journal of Nutrition and Health
    • /
    • 제44권3호
    • /
    • pp.196-202
    • /
    • 2011
  • 본 연구는 EGCG의 항 당뇨 활성기전으로 췌장종양 선세포 AR42J의 분화 및 내분비기능 개선에 미치는 영향과 그 세포 신호전달 기전을 확인하였다. 그 결과 첫째, AR42J 세포에 EGCG 처리 시 췌장종양 선세포의 세포증식이 농도 의존적으로 감소되었다. 둘째, 세포사멸 유도가 유의적으로 일어나지 않는 농도인 1uM EGCG를 AR42J 세포에 처리한 결과 ngn 3, ${\alpha}$-amylase, insulin은 EGCG처리 24시간에 mRNA, 단백질 발현증가를 나타내었고 48시간에 유의적 증가를 나타내었다. 셋째, EGCG 처리 시 ERK, JNK MAP Kinase 기전은 인산화 억제를 나타내었고 반면에 p38 기전의 인산화는 48시간에 유의적 증가를 하였다. 넷째, p38기전 저해제인 SB203580을 처리하여 EGCG가 MAP Kinase 기전중의 하나인 p38 기전 인산화 활성의 회복을 나타내어 ngn 3 발현을 위한 전사 신호전달 기전임을 다시 확인하였다. 따라서 녹차 생리활성 성분인 EGCG의 췌장종양 선 세포 AR42J 처리 결과 EGCG는 p38 MAP Kinase 기전 활성을 통해 췌장 선세포의 분화지표인 ngn 3 발현을 증가시키며 췌장내분비 기능 지표인 ${\alpha}$-amylase, insulin 발현증가를 나타내어 세포의 내분비기능 개선에도 영향을 미치는 것으로 사료된다.

Transient activation of the MAP kinase signaling pathway by the forward signaling of EphA4 in PC12 cells

  • Shin, Jong-Dae;Gu, Chang-Kyu;Kim, Ji-Eun;Park, Soo-Chul
    • BMB Reports
    • /
    • 제41권6호
    • /
    • pp.479-484
    • /
    • 2008
  • In the present study, we demonstrate that ephrin-A5 is able to induce a transient increase of MAP kinase activity in PC12 cells. However, the effects of ephrin-A5 on the MAP kinase signaling pathway are about three-fold less than that of EGF. In addition, we demonstrate that EphA4 is the only Eph member expressed in PC12 cells, and that tyrosine phosphorylation induced by ephrin-A5 treatment is consistent with the magnitude and longevity of MAP kinase activation. Experiments using the Ras dominant negative mutant N17Ras reveal that Ras plays a pivotal role in ephrin-A5-induced MAP kinase activation in PC12 cells. Importantly, we found that the EphA4 receptor is rapidly internalized by endocytosis upon engagement of ephrin-A5, leading to a subsequent reduction in the MAP kinase activation. Together, these data suggest a novel regulatory mechanism of differential Ras-MAP kinase signaling kineticsexhibited by the forward signaling of EphA4 in PC12 cells.

핵 내에서 분리한 Mitogen-Activated Protein (MAP) Kinase의 Transcription Factor에 대한 인산화 (Phosphorylation of Transcriptional Factor by Mitogen-activated Protein (MAP) Kinase Purified from Nucleus)

  • 김윤석;김소영;김태우
    • 대한의생명과학회지
    • /
    • 제2권2호
    • /
    • pp.175-185
    • /
    • 1996
  • 모든 진핵세포에 존재하며 세포의 성장 및 분화에 주로 관계되는 신호전달물질의 하나인 Mitogen-activated protein(MAP)kinase의 mitogen에 의한 핵내 활성화와 기질 인산화에 대해 알아보기 위해 본 실험을 수행하였다. P388세포를 10% fetal bovine serum이 첨가된 DMEM배지에 배양한 후, 혈청이 들어있지 않은 배지에서 24시간 더 배양하고 serum 및 PMA를 농도별로 처리하여 세포성 장을 위한 최적 농도를 확인한 결과 serum은 5-20% 농도에서 세포성장을 촉진시켰고 PMA는 실험한 모든 농도에서 세포성장을 거의 촉진시키지 못하는 경향을 확인하였다. 이어 P388 세포를 serum 및 PMA로 10 분간 활성화하여 파쇄한후 세포질분획과 핵분획으로 분리하여 각 분획을 10% gel 상에서 전기영동 하여 nitrocellulose paper에 옳긴 후 anti-ERKI antibody를 이용해 확인해본 결과 serum, PMA로 처리된 세포 모두에서 MAP kinase의 핵내 이동이 관찰되었으며 특히 세포질 내에 주로 존재하는 42, 44 Kd의 MAP kinase isoform중 42 Kd의 isoform이 주로 핵내로 이동되는 것이 관찰되었다. MAP kinase의 기질인산화 실험을 위해 serum으로 활성화시킨 세포를 파쇄하여 SP-sephadex C-50, Phenyl superose, Mono Q column의 순서로 chromatography를 시 행하여 MAP kinase를 부분분리 하였다. 이와 같이 얻은 MAP kinase를 가지고 면역 T세포에 존재하는 tyrosine kinase인 $p56^{lck}$ 의 N-terminal peptide로 구성된 GST-fusion protein에 대한 인산화를 확인하였다. 또한 세포에서 분리한 MAP kinase를 가지고 transcription factor의 하나인 c-Jun protein에 대한 인산화실험을 실시한 결과 MAP kinase에 의해 인산화 됨이 확인되었다. 이상의 결과를 통해 P388세포는 (1)세포 성장시 외부 신호를 G-protein-coupled receptor/protein kinase C/MAP kinase의 경로보다는 주로 tyrosine kinase receptor protein/Ras/MAP kinase의 경로를 이용하여 핵으로 전달하는 것으로 추측되 며 (2) mitogen의 처리로 활성화된 MAP kinase중 주로 42 Kd isoform이 핵내로 이동하고, 분리한 MAP kinase가 GST-fusion protein과 transcription factor인 c-Jun을 모두 인산화 시키는 결과로 보아 MAP kinase의 isoform에 따라 표적 compartment가 다르고 결과적으로 표적 기질에 차이가 있을지 모른다고 간접적으로 추론할 수 있다.

  • PDF

Sphigosine-1-Phosphate-Induced ERK Activation Protects Human Melanocytes from UVB-Induced Apoptosis

  • Kim, Dong-Seok;Kim, Sook-Young;Lee, Jai-Eun;Kwon, Sun-Bang;Joo, Young-Hyun;Youn, Sang-Woong;Park, Kyoung-Chan
    • Archives of Pharmacal Research
    • /
    • 제26권9호
    • /
    • pp.739-746
    • /
    • 2003
  • Ultraviolet B (UVB) is known to induce apoptosis in human melanocytes. Here we show the cytoprotective effect of sphingosine-1-phosphate (S1P) against UVB-induced apoptosis. We also show that UVB-induced apoptosis of melanocytes is mediated by caspase-3 activation and poly(ADP-ribose) polymerase (PARP) cleavage, and that S1P prevents apoptosis by inhibiting this apoptotic pathway. We further investigated three major mitogen-activated protein (MAP) kinases after UVB irradiation. UVB gradually activated c-Jun N-terminal kinase (JNK) and p38 MAP kinase, while extracellular signal-regulated protein kinase (ERK) was inactivated transiently. Blocking of the p38 MAP kinase pathway using SB203580 promoted cell survival and inhibited the activation of caspase-3 and PARP cleavage. These results suggest that p38 MAP kinase activation may play an important role in the UVB-induced apoptosis of human melanocytes. To explain this cytoprotective effect, we next examined whether S1P could inhibit UVB-induced JNK and p38 MAP kinase activation. However, S1P was not found to have any influence on UVB-induced JNK or p38 MAP kinase activation. In contrast, S1P clearly stimulated the phosphorylation of ERK, and the specific inhibition of the ERK pathway using PD98059 abolished the cytoprotective effect of S1P. Based on these results, we conclude that the activation of p38 MAP kinase plays an important role in UVB-induced apoptosis, and that S1P may show its cytoprotective effect through ERK activation in human melanocytes.

Induction of MAP kinase phosphatase 3 through Erk/MAP kinase activation in three oncogenic Ras (H-, K- and N-Ras)-expressing NIH/3T3 mouse embryonic fibroblast cell lines

  • Koo, JaeHyung;Wang, Sen;Kang, NaNa;Hur, Sun Jin;Bahk, Young Yil
    • BMB Reports
    • /
    • 제49권7호
    • /
    • pp.370-375
    • /
    • 2016
  • Ras oncoproteins are small molecular weight GTPases known for their involvement in oncogenesis, which operate in a complex signaling network with multiple effectors. Approximately 25% of human tumors possess mutations in a member of this family. The Raf1/MEK/Erk1/2 pathway is one of the most intensively studied signaling mechanisms. Different levels of regulation account for the inactivation of MAP kinases by MAPK phosphatases in a cell type- and stimuli-dependent manner. In the present study, using three inducible Ras-expressing NIH/3T3 cell lines, we demonstrated that MKP3 upregulation requires the activation of the Erk1/2 pathway, which correlates with the shutdown of this pathway. We also demonstrated, by applying pharmacological inhibitors and effector mutants of Ras, that induction of MKP3 at the protein level is positively regulated by the oncogenic Ras/Raf/MEK/Erk1/2 signaling pathway.

Molecular Mechanism of NO-induced Cell Death of PC12 Cells by $IFN{\gamma}\;and\;TNF{\alpha}$

  • Yi, Seh-Yoon;Han, Seon-Kyu;Lee, Jee-Yeon;Yoo, Young-Sook
    • Molecular & Cellular Toxicology
    • /
    • 제1권3호
    • /
    • pp.196-202
    • /
    • 2005
  • Nitric oxide (NO) is a small, diffusible, and highly reactive molecule, which plays dichotomous regulatory roles under physiological and pathological conditions. NO promotes apoptosis in some cells, and inhibits apoptosis in other cells. In the present study, we attempted to characterize the NO signaling pathway and cellular response in PC12 cells treated with cytokines. $IFN{\gamma}\;and\;TNF{\alpha}$ treatment resulted in a synergistic increase of nitrite accumulation, with the induction of inducible nitric oxide synthase (iNOS) in the PC12 cells. Moreover, as nitrite concentration increased, cell viability decreased. In order to explore MAP kinase involvement in nitric oxide production resultant from $IFN{\gamma}\;and\;TNF{\alpha}$ stimulation, we measured the activation of MAP kinase using specific MAP kinase inhibitors. PC12 cells pretreated with SB203580, a p38 MAP kinase-specific inhibitor, resulted in the inhibition of iNOS expression and NO production. However, PD98059, an ERK/MAP kinase-specific inhibitor, was not observed to exert such an effect. In addition, Stat1 activated by $IFN{\gamma}\;and\;TNF{\alpha}$ was interacted with p38 MAPK. These data suggest that p38 MAP kinase mediates cytokine-mediated iNOS expression in the PC12 cells, and Jak/Stat pathway interferes with p38 MAPK signaling pathway.

Role of PI3-kinase and MAP Kinases in the ARE-mediated Glutathione S-Transferase Induction by Phytochemicals: Comparison with the Oxidative Stress Caused by Decreased Glutathione

  • Kim, Sang-Geon;Kang, Keon-Wook
    • Toxicological Research
    • /
    • 제17권
    • /
    • pp.251-256
    • /
    • 2001
  • The expression of phase II detoxifying enzymes is affected by a variety of compounds and the induction of the enzymes plays an essential role in chemoprevention. A variety of phytochemicals such as sulfur-containing chemoprotective agents (SCC) may trigger cellular signals and activate phase II gene expression through ARE activation. see induces glutathione S-transferases. Studies were conducted to investigate the role of mitogen-activated protein (MAP) kinase and phosphatidylinositol 3-kinase (PI3-kinase) in the induction of GST (e.g. rGSTA2) by sec. We also studied the MAP kinase pathway responsible for the GST expression by see and compared that with the pathway activated by oxidative stress as a result of sulfur amino acids deprivation (SAAD). see inhibited phosphorylation of ERK1/2 although the effect of see on JNK and p38 MAP kinase was minimal. Wortmannin and LY294002. PI3-kinase inhibitors. abolished the increases in rGSTA2 mRNA and protein levels by SCC. Deprivation of cystine and methionine caused oxidative stress in H4IIE cells. as evidenced by a decrease in the reduced glutathione and an increase in prooxidant production. Electrophoretic mobility shift assay revealed that the ARE complex consisting of Nrf-1/2 and Maf proteins was activated 12~48 h. The rGSTA2 mRNA and protein levels were increased by SAAD. Activation of ARE and induction of rGSTA2 were both completely inhibited by PI3-kinase inhibitors. Inhibition of p38 MAP kinase by SB203580 prevented the ARE-mediated rGSTA2 induction. The results of this study showed that PI3-kinase might play an essential role in the ARE-mediated rGSTA2 induction by see or SAAD and that the dual MAP kinase pathways were responsible for the enzyme induction.

  • PDF

Constitutively active Ras negatively regulates Erk MAP kinase through induction of MAP kinase phosphatase 3 (MKP3) in NIH3T3 cells

  • Park, Young Jae;Lee, Jong Min;Shin, Soon Young;Kim, Young Ho
    • BMB Reports
    • /
    • 제47권12호
    • /
    • pp.685-690
    • /
    • 2014
  • The Ras/Raf/MEK/Erk signaling pathway is important for regulation of cell growth, proliferation, differentiation, survival, and apoptosis in response to a variety of extracellular stimuli. Lack of Erk MAPK activation is observed in several cancer cells despite active activation of Ras. However, little is known about the modulation of Erk1/2 activity by active Ras. Here, we show that overexpression of active H-Ras (H-RasG12R) in NIH3T3 fibroblasts impaired FGF2-induced Erk1/2 phosphorylation, as compared to wild-type cells. Northern blot analysis revealed that prolonged expression of active Ras increased MAP kinase phosphatase 3 (MKP3) mRNA expression, a negative regulator of Erk MAPK. Inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway abrogated active Ras-induced up-regulation of MKP3 expression, leading to the rescue of Erk1/2 phosphorylation. Our results demonstrated that the Ras/Raf/MEK/Erk signaling cascade is negatively regulated by the PI3K/Aktdependent transcriptional activation of the MKP3 gene.

약침용(藥鍼用) 봉독성분(蜂毒成分) 중(中) Apamin의 항암효과(抗癌效果)와 MAP-Kinase 신호전달체계에 관한 연구(硏究) (The Anti-Cancer Effect of Apamin in Bee-Venom on Melanoma cell line SK-MEL-2 and Inhibitory Effect on the MAP-Kinase Signal Pathway)

  • 김윤미;이재동;박동석
    • Journal of Acupuncture Research
    • /
    • 제18권4호
    • /
    • pp.101-115
    • /
    • 2001
  • Objective : To characterize the antitumorigenic potential of Apamin, one of the major components of bee venom, its effects on cell proliferation and the mitogen-activated protein kinase (MAPK) signal transduction pathway were characterized using the human melanoma cell line SK-MEL-2. Methods & Results : Cell counting analysis for cell death demonstrated that consistent with a previous results, SK-MEL-2 cells treated with $0.5-2.0{\mu}g/ml$ of Apamin showed no recognizable cytotoxic effect whereas detectable induction of cell death was identified at concentrations over $5.0{\mu}g/ml$. [3H]thymidine incorporation assay for cell proliferation demonstrated that DNA replication of SK-MEL-2 cells is inhibited by Apamin in a dose- and time-dependent manner. To explore whether Apamin-induced growth suppression is associated with the MAPK signaling pathway, phosphorylation of Erk, a function mediator of MAPK growth-stimulating signal, was examined Western blot assay using a phospho-specific Erkl/2 antibody. A significant increase of Erkl/2 phosphorylation level was observed in Apamin-treated cells compared with untreated control cells. Qantitative RT-PCR analysis revealed that Apamin inhibit expression of MAPK downstream genes such as c-Jun, c-Fos, and cyclin D1 but not expression of MAPK pathway component genes including Ha-Ras, c-Raf-1, MEK1, and Erk. Conclusion : It is strongly suggested that the antitumorigenic activity of Apamin might result in part from its inhibitory effect on the MAPK signaling pathway in human melanoma cells SK-MEL-2.

  • PDF

MAP Kinase Activation is Required for the MMP-9 Induction by TNF-Stimulation

  • Kim, Kyung-Chan;Lee, Chu-Hee
    • Archives of Pharmacal Research
    • /
    • 제28권11호
    • /
    • pp.1257-1262
    • /
    • 2005
  • MMP-9 is a metalloproteinase capable of basement membrane degradation in vivo. Expression of MMP-9 can be found in normal conditions such as trophoblasts, osteoclasts, and leukocytes and their precursors. They also occur as well as in pathological conditions, such as the invasive growth of primary tumors, metastasis, angiogenesis, rheumatoid arthritis, and periodontal diseases. MMP-9 upregulation can be highly induced by a wide range of agents. These agents include growth factors, cytokines, cell-cell, and cell-ECM adhesion molecules, and agents altering cell shape. Here, we observed that TNF-$\alpha$ stimulated human monocytic cell line, HL-60 produced MMP-9 in a dose and time dependent manner. Real time PCR results indicated transcriptional upregulation of MMP-9 as early as 3 h post TNF-$\alpha$ stimulation. To investigate the signaling pathway underlined in TNF-$\alpha$ induced MMP-9 expression, three MAP kinase inhibitors were added to cells 1 h prior to TNF-$\alpha$ treatment. The ERK inhibitor completely abolished MMP-9 expression by TNF-$\alpha$. But neither p38 MAP kinase nor JNK inhibitor had an effect on TNF-$\alpha$ induced MMP-9 expression, suggesting that ERK activation is required for the MMP-9 induction by TNF-$\alpha$. Taken together, we found that TNF-$\alpha$ stimulation facilitates ERK activation, which results in the transcriptional upregulation of MMP-9 gene and subsequent MMP-9 production and secretion.