• Title/Summary/Keyword: MAO inhibition selectivity

Search Result 5, Processing Time 0.017 seconds

1-Methyl Substituent and Stereochemical Effects of 2-Phenylcyclopropylamines on the Inhibition of Rat Brain Mitochondrial Monoamine Oxidase A and B

  • Kang, Gun-Il;Hong, Suk-Kil;Choi, Hee-Kyung
    • Archives of Pharmacal Research
    • /
    • v.10 no.1
    • /
    • pp.50-59
    • /
    • 1987
  • (E)-2-Phenylcyclopropylamine ((E)-TCP), (Z)-2-Phenylacyclopropylamine ((Z)-TCP), (E)-1-methyl-2-phenylcyclopropylamine ((E)-MTCP), and (Z)-1-methyl-2-phenylcyclopropylamine ((Z)-MTCP) were synthesized and used to determine to what extent 1-methylsubstitution and stereochemistry of 2-phenycyclopropylamines affect inhibition of monoamine oxidase (MAO). Inhibition of rat brain mitochondrial MAO-A and B by the compounds were measured using serotonin and benzylamine as the substrate, respectively and $IC_{50}$ values obtianed with 95% confidence limits by the method of computation. For the inhibition of MAO-A, (E)-MTPC ($IC_{50}$ = 6.2 * $10^{-8}$M) was found to be 37 times more potent than (Z)-MTCP ($IC_{50}$ = 7.8 * $10^{-8}$M), was 7 times more potent than (Z)-MTCP($IC_{50}$= 4.7 * $10^{-7}$M) and (E)-TCP($IC_{50}$ =7.8 * $10^{-8}$M),0.6 times as potent as (Z)- TCP ($IC_{50}$ = 4.4 * $10^{-8}$M). The results suggested that while without 1-methyl group, potency of a (Z)-isomer was comparable to that of (E)-isomer, the methyl group in its (Z)-position was very unfavorable to the inhibition of MAO and that in its (E)-position, the methyl group contributed positively to the potency as found by the fact that (E)-MTCP was 1-5 times more potent than (E)-TCP. In view of the selective inhibition of MAO-A- or B over MAO-A and 1-methyl substitution as well as the stereochemical factors did not significantly influence the selectivity.

  • PDF

Synthesis of Two Nitro Analogs of Tranylcypromine: Relations of Aromatic Substitution of Nitro Groups to MAO-Inhibitory Activity

  • Kang, Gun-Il;Hong, Suk-Kil
    • Archives of Pharmacal Research
    • /
    • v.11 no.1
    • /
    • pp.33-40
    • /
    • 1988
  • Two new nitro analogs of tranylcypromine, (E)-2-(p-nitrophenyl)cyclopropylamine ((E)-p-NTCP) and (E)-2-(m-nitrophenyl)cyclopropylamine ((E)-m-NTCP) were synthesized in order to examine the effect of aromatic nitro substitution on the MAO-inhibitory activity of 2-phenylcyclopropylamines. The compounds were obtained by treating t-butyl (E)-2-(p-nitrophenyl) cyclopropanecarbamate and t-butyl (E)-2-(m-nitrophenyl)cyclopropanecarbamate with p-toluenesulfonic acid in $CH_3$CN. Inhibitions of rat brain mitochondrial MAO-A and B by the compounds were examined using serotonin and benzylamine as the substrate at both in vitro and ex vivo levels. It was found from in vitro measurements that (E)-p-NTCP at $6.0{\times}10^{-5}M$ elicited merely 22.5% inhibition against MAO-B without any effect on MAO-A. In contrast, (E)-m-NTCP showed fair degrees of inhibitions of MAO-A and B with $IC_{50}$ values, $2.5{\times}10^{-7}M\;and\;1.4{\times}10^{-6}M$, respectively. It was also noted from (E)-m-NTCP that m-nitro substitution caused a shift of selectivity of the inhibition toward MAO-A. According to ex vivo measurements at 1.5, 3, 6, and 12 hr following the administration of a dose of 0.015 mmol/kg, i.p. to the rats, the inhibition percents of MAO-A by (E)-m-NTCP were 58.6, 63.7 63.6, and 46.6%, slightly lower than those observed by tranylcypromine. Whereas, (E)-m-NTCP at the same dose level did not show significant inhibitions against both MAO-A and MAO-B. Possible reasons for the difference in potencies between (E)-m-NTCP and (E)-p-NTCP were sought in relation to differing electron withdrawing effects of m- and p-substituents which will influence electron density of the side chain amino functions and the partitions.

  • PDF

Potent Inhibition of Monoamine Oxidase B by a Piloquinone from Marine-Derived Streptomyces sp. CNQ-027

  • Lee, Hyun Woo;Choi, Hansol;Nam, Sang-Jip;Fenical, William;Kim, Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.4
    • /
    • pp.785-790
    • /
    • 2017
  • Two piloquinone derivatives isolated from Streptomyces sp. CNQ-027 were tested for the inhibitory activities of two isoforms of monoamine oxidase (MAO), which catalyzes monoamine neurotransmitters. The piloquinone 4,7-dihydroxy-3-methyl-2-(4-methyl-1-oxopentyl)-6H-dibenzo[b,d]pyran-6-one (1) was found to be a highly potent inhibitor of human MAO-B, with an $IC_{50}$ value of $1.21{\mu}M$; in addition, it was found to be highly effective against MAO-A, with an $IC_{50}$ value of $6.47{\mu}M$. Compound 1 was selective, but not extremely so, for MAO-B compared with MAO-A, with a selectivity index value of 5.35. Compound 1,8-dihydroxy-2-methyl-3-(4-methyl-1-oxopentyl)-9,10-phenanthrenedione (2) was moderately effective for the inhibition of MAO-B ($IC_{50}=14.50{\mu}M$) but not for MAO-A ($IC_{50}$ > $80{\mu}M$). There was no time-dependency in inhibition of MAO-A or -B by compound 1, and the MAO-A and -B activities were almost completely recovered in the dilution experiments with an excess amount of compound 1. Compound 1 showed competitive inhibition for MAO-A and -B, with $K_i$ values of 0.573 and $0.248{\mu}M$, respectively. These results suggest that piloquinones from a microbial source could be potent reversible MAO inhibitors and may be useful lead compounds for developing MAO enzyme inhibitors to treat related disorders, such as depression, Parkinson's disease, and Alzheimer's disease.

Chromenone Derivatives as Monoamine Oxidase Inhibitors from Marine-Derived MAR4 Clade Streptomyces sp. CNQ-031

  • Oh, Jong Min;Lee, Chaeyoung;Nam, Sang-Jip;Kim, Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.7
    • /
    • pp.1022-1027
    • /
    • 2021
  • Three compounds were isolated from marine-derived Streptomyces sp. CNQ-031, and their inhibitory activities against monoamine oxidases (MAOs), acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and β-secretase (BACE-1) were evaluated. Compound 1 (5,7-dihydroxy-2-isopropyl-4H-chromen-4-one) was a potent and selective inhibitor of MAO-A, with a 50% inhibitory concentration (IC50) of 2.70 µM and a selectivity index (SI) of 10.0 versus MAO-B. Compound 2 [5,7-dihydroxy-2-(1-methylpropyl)-4H-chromen-4-one] was a potent and low-selective inhibitor of MAO-B, with an IC50 of 3.42 µM and an SI value of 2.02 versus MAO-A. Compound 3 (1-methoxyphenazine) did not inhibit MAO-A or MAO-B. All three compounds showed little inhibitory activity against AChE, BChE, and BACE-1. The Ki value of compound 1 for MAO-A was 0.94 ± 0.28 µM, and the Ki values of compound 2 for MAO-A and MAO-B were 3.57 ± 0.60 and 1.89 ± 0.014 µM, respectively, with competitive inhibition. The 1-methylpropyl group in compound 2 increased the MAO-B inhibitory activity compared with the isopropyl group in compound 1. Inhibition of MAO-A and MAO-B by compounds 1 and 2 was recovered by dialysis experiments. These results suggest that compounds 1 and 2 are reversible, competitive inhibitors of MAOs and can be considered potential therapies for neurological disorders such as depression and Alzheimer's disease.

3-Phenethyl-2-phenylquinazolin-4(3H)-one isolated from marine-derived Acremonium sp. CNQ-049 as a dual- functional inhibitor of monoamine oxidases-B and butyrylcholinesterase

  • Jong Min Oh;Prima F. Hillman;Sang-Jip Nam;Hoon Kim
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.165-170
    • /
    • 2023
  • Isolation of the culture broth of a marine-derived Acremonium sp. CNQ-049 guided by HPLC-UV yielded compound 1 (3-phenethyl-2-phenylquinazolin-4(3H)-one), and its inhibitory activities against monoamine oxidases (MAOs), cholinesterases (ChEs), and β-secretase 1 (BACE1) were evaluated. Compound 1 was an effective selective MAO-B inhibitor with an IC50 value of 9.39 µM and a selectivity index (SI) value of 4.26 versus MAO-A. In addition, compound 1 showed a potent selective butyrylcholinesterase (BChE) inhibition with an IC50 value of 7.99 µM and an SI value of 5.01 versus acetylcholinesterase (AChE). However, compound 1 showed weak inhibitions against MAO-A, AChE, and BACE1. The Ki value of compound 1 for MAO-B was 5.22±1.73 µM with competitive inhibition, and the Ki value of compound 1 for BChE was 3.00±1.81 µM with mixed-type inhibition. Inhibitions of MAO-B and BChE by compound 1 were recovered by dialysis experiments. These results suggest that compound 1 is a dual-functional reversible inhibitor of MAO-B and BChE, that can be used as a treatment agent for neurological disorders.