• 제목/요약/키워드: MALDI-TOF MS analysis

검색결과 166건 처리시간 0.021초

복숭아혹진딧물(Myzus persicae) 약충에 대한 에틸포메이트 훈증 독성의 생화학적 메커니즘 (Biochemical mechanisms of fumigant toxicity by ethyl formate towards Myzus persicae nymphs)

  • 김경남;이병호;박정선;양정오;이성은
    • Journal of Applied Biological Chemistry
    • /
    • 제60권3호
    • /
    • pp.271-277
    • /
    • 2017
  • 에틸포메이트는 해충을 방제하기 위한 훈증제로서 사용되어 왔다. 그러나 농산업에서 해충을 박멸하기 위하여 사용된 이 물질이 일으키는 훈증독성의 작용점에 대해서는 많은 연구가 수행되지 않았다. 본 연구에서 저자들은 복숭아혹진딧물 약충에 에틸포메이트를 훈증 처리 하였을 때 추측 가능한 작용점들을 제시하였다. 에틸포메이트 훈증 처리 후 복숭아혹진딧물 약충에 대한 생화학 및 분자적 수준에서의 변화를 측정하였다. Cytochrome c oxidase (COX)의 활성은 에틸포메이트 훈증 처리된 복숭아혹진딧물 약충에서 약 2배 이상 증가하였다. Acetylcholinesterase (AChE)의 경우 에틸포메이트의 훈증 처리 농도가 증가됨과 함께 유전자 발현이 감소되었다. 이 두 발견은 COX와 AChE가 주요한 에틸포메이트 훈증독성의 작용점임을 시사하였다. 이 결과들과 함께 MALDI-TOF MS/MS를 이용하여 지질대사체를 분석한 후 2배 이상 증감을 보인 9종 인지질들을 동정하였고 이들이 세포막 조성에 변화를 유발함을 밝혔다. 결론적으로 복숭아혹진딧물 약충에 대한 에틸포메이트의 훈증독성은 COX 활성 변화, AChE 발현 변화, 그리고 인지질의 생성 변화에 기인하였다.

Comparative Serum Proteomic Analysis of Serum Diagnosis Proteins of Colorectal Cancer Based on Magnetic Bead Separation and MALDI-TOF Mass Spectrometry

  • Deng, Bao-Guo;Yao, Jin-Hua;Liu, Qing-Yin;Feng, Xian-Jun;Liu, Dong;Zhao, Li;Tu, Bin;Yang, Fan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권10호
    • /
    • pp.6069-6075
    • /
    • 2013
  • Background: At present, the diagnosis of colorectal cancer (CRC) requires a colorectal biopsy which is an invasive procedure. We undertook this pilot study to develop an alternative method and potential new biomarkers for diagnosis, and validated a set of well-integrated tools called ClinProt to investigate the serum peptidome in CRC patients. Methods: Fasting blood samples from 67 patients diagnosed with CRC by histological diagnosis, 55 patients diagnosed with colorectal adenoma by biopsy, and 65 healthy volunteers were collected. Division was into a model construction group and an external validation group randomly. The present work focused on serum proteomic analysis of model construction group by ClinProt Kit combined with mass spectrometry. This approach allowed construction of a peptide pattern able to differentiate the studied populations. An external validation group was used to verify the diagnostic capability of the peptidome pattern blindly. An immunoassay method was used to determine serum CEA of CRC and controls. Results: The results showed 59 differential peptide peaks in CRC, colorectal adenoma and health volunteers. A genetic algorithm was used to set up the classification models. Four of the identified peaks at m/z 797, 810, 4078 and 5343 were used to construct peptidome patterns, achieving an accuracy of 100% (> CEA, P<0.05). Furthermore, the peptidome patterns could differentiate the validation group with high accuracy close to 100%. Conclusions: Our results showed that proteomic analysis of serum with MALDI-TOF MS is a fast and reproducible approach, which may provide a novel approach to screening for CRC.

Proteomic Analysis of Global Changes in Protein Expression During Exposure of Gamma Radiation in Bacillus sp. HKG 112 Isolated from Saline Soil

  • Gupta, Anil Kumar;Pathak, Rajiv;Singh, Bharat;Gautam, Hemlata;Kumar, Ram;Kumar, Raj;Arora, Rajesh;Gautam, Hemant K.
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권6호
    • /
    • pp.574-581
    • /
    • 2011
  • A Gram-positive bacterium was isolated from the saline soils of Jangpura (U.P.), India, and showed high-level of radiation-resistant property and survived upto 12.5 kGy dose of gamma radiation. The 16S rDNA sequence of this strain was examined, identified as Bacillus sp. strain HKG 112, and was submitted to the NCBI GenBank (Accession No. GQ925432). The mechanism of radiation resistance and gene level expression were examined by proteomic analysis of whole-cell extract. Two proteins, 38 kDa and 86.5 kDa excised from SDS-PAGE, which showed more significant changes after radiation exposure, were identified by MALDI-TOF as being flagellin and S-layer protein, respectively. Twenty selected 2-DE protein spots from the crude extracts of Bacillus sp. HKG 112, excised from 2- DE, were identified by liquid chromatography mass spectrometry (LC-MS) out of which 16 spots showed significant changes after radiation exposure and might be responsible for the radiation resistance property. Our results suggest that the different responses of some genes under radiation for the expression of radiation-dependent proteins could contribute to a physiological advantage and would be a significant initial step towards a fullsystem understanding of the radiation stress protection mechanisms of bacteria in different environments.

Proteome Analysis of Disease Resistance against Ralstonia solanacearum in Potato Cultivar CT206-10

  • Park, Sangryeol;Gupta, Ravi;Krishna, R.;Kim, Sun Tae;Lee, Dong Yeol;Hwang, Duk-ju;Bae, Shin-Chul;Ahn, Il-Pyung
    • The Plant Pathology Journal
    • /
    • 제32권1호
    • /
    • pp.25-32
    • /
    • 2016
  • Potato is one of the most important crops worldwide. Its commercial cultivars are highly susceptible to many fungal and bacterial diseases. Among these, bacterial wilt caused by Ralstonia solanacearum causes significant yield loss. In the present study, integrated proteomics and genomics approaches were used in order to identify bacterial wilt resistant genes from Rs resistance potato cultivar CT-206-10. 2-DE and MALDI-TOF/TOF-MS analysis identified eight differentially abundant proteins including glycine-rich RNA binding protein (GRP), tomato stress induced-1 (TSI-1) protein, pathogenesis-related (STH-2) protein and pentatricopeptide repeat containing (PPR) protein in response to Rs infection. Further, semi-quantitative RT-PCR identified up-regulation in transcript levels of all these genes upon Rs infection. Taken together, our results showed the involvement of the identified proteins in the Rs stress tolerance in potato. In the future, it would be interesting to raise the transgenic plants to further validate their involvement in resistance against Rs in potato.

작물학 분야 프로테오믹스의 응용과 전망 (Application and perspectives of proteomics in crop science fields)

  • 우선희
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2004년도 춘계 학술대회지
    • /
    • pp.12-27
    • /
    • 2004
  • Thanks to spectacular advances in the techniques for identifying proteins separated by two-dimensional electrophoresis and in methods for large-scale analysis of proteome variations, proteomics is becoming an essential methodology in various fields of plant sciences. Plant proteomics would be most useful when combined with other functional genomics tools and approaches. A combination of microarray and proteomics analysis will indicate whether gene regulation is controlled at the level of transcription or translation and protein accumulation. In this review, we described the catalogues of the rice proteome which were constructed in our program, and functional characterization of some of these proteins was discussed. Mass-spectrometry is a most prevalent technique to identify rapidly a large of proteins in proteome analysis. However, the conventional Western blotting/sequencing technique us still used in many laboratories. As a first step to efficiently construct protein data-file in proteome analysis of major cereals, we have analyzed the N-terminal sequences of 100 rice embryo proteins and 70 wheat spike proteins separated by two-dimensional electrophoresis. Edman degradation revealed the N-terminal peptide sequences of only 31 rice proteins and 47 wheat proteins, suggesting that the rest of separated protein spots are N-terminally blocked. To efficiently determine the internal sequence of blocked proteins, we have developed a modified Cleveland peptide mapping method. Using this above method, the internal sequences of all blocked rice proteins (i. e., 69 proteins) were determined. Among these 100 rice proteins, thirty were proteins for which homologous sequence in the rice genome database could be identified. However, the rest of the proteins lacked homologous proteins. This appears to be consistent with the fact that about 30% of total rice cDNA have been deposited in the database. Also, the major proteins involved in the growth and development of rice can be identified using the proteome approach. Some of these proteins, including a calcium-binding protein that fumed out to be calreticulin, gibberellin-binding protein, which is ribulose-1,5-bisphosphate carboxylase/oxygenase activate in rice, and leginsulin-binding protein in soybean have functions in the signal transduction pathway. Proteomics is well suited not only to determine interaction between pairs of proteins, but also to identify multisubunit complexes. Currently, a protein-protein interaction database for plant proteins (http://genome .c .kanazawa-u.ac.jp/Y2H)could be a very useful tool for the plant research community. Recently, we are separated proteins from grain filling and seed maturation in rice to perform ESI-Q-TOF/MS and MALDI-TOF/MS. This experiment shows a possibility to easily and rapidly identify a number of 2-DE separated proteins of rice by ESI-Q-TOF/MS and MALDI-TOF/MS. Therefore, the Information thus obtained from the plant proteome would be helpful in predicting the function of the unknown proteins and would be useful in the plant molecular breeding. Also, information from our study could provide a venue to plant breeder and molecular biologist to design their research strategies precisely.

  • PDF

복숭아 농장 토양에서 Nematodes와 연관된 Lactobacillus spp.의 분리 및 동정 (Identification of Lactobacillus spp. associated with nematodes in peach farm soil)

  • 이우현;최재임;이진일;이원표;윤성식
    • 미생물학회지
    • /
    • 제53권3호
    • /
    • pp.163-169
    • /
    • 2017
  • 복숭아 수확시기에 낙과한 토양에서 Lactobacillus sp. D4와 D5 균주를 분리하였다. 분리한 Lactobacillus sp. D4와 D5 균주를 동정하기 위하여 형태학적 동정, 생화학적 동정 및 16S rRNA 유전자서열 분석을 수행하였다. 16S rRNA 유전자서열 분석 결과 Lactobacillus sp. D4는 Lactobacillus plantarum subsp. plantarum ATCC $14917^T$과 Lactobacillus pentosus ATCC $40997^T$에 각각 99.05%, 98.98% 일치하였으며, Lactobacillus sp. D5는 Lactobacillus pentosus ATCC $40997^T$, Lactobacillus plantarum subsp. plantarum ATCC $14917^T$에 각각 98.71%, 98.64% 일치하였다. Lactobacillus sp. D4와 D5 균주는 당 이용성 비교에서 Lactobacillus plantarum ATCC $14917^T$과 Lactobacillus pentosus ATCC $8041^T$에 비교하여 다른 결과를 나타내었다. 정확한 동정을 위하여 VITEK MS matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) 분석, multiplex PCR, random amplified polymorphic DNA (RAPD)-PCR을 수행하였다. 이러한 결과에 근거하여 Lactobacillus sp. D4와 D5 균주는 Lactobacillus plantarum으로 동정되었다.

Muscle Proteome Analysis for the Effect of Panax Ginseng Extracts in Chicken: Identification of Proteins Using Peptide Mass Fingerprinting

  • Jung, K.C.;Yu, S.L.;Lee, Y.J.;Choi, K.D.;Choi, J.S.;Kim, Y.H.;Jang, B.G.;Kim, S.H.;Hahm, D.H.;Lee, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권7호
    • /
    • pp.922-926
    • /
    • 2005
  • The present study was aimed to investigate proteome affected by Panax ginseng extracts in chicken muscles. The whole muscle proteins from chicken fed boiled extracts of 0% (control), 1%, 3%, and 5% Panax ginseng in water were separated by two-dimensional electrophoresis (2-DE) gels using immobilized non-linear gradient (pH 3-10) strips. More than 300 protein spots were detected on silver staining gels. Among them, four protein spots were distinctively up-regulated by Panax ginseng treatments and further investigated by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The obtained MS data were searched against SwissProt database using the Mascot search engine. The up-regulated proteins were finally identified as $\alpha$-tropomyosin (2 spots), triosephosphate isomerase, and one unknown protein. Based on the known functions of the identified proteins, they are highly related to muscle development and enhanced immunity in chickens. These proteins can give valuable information of biochemical roles for Panax ginseng in chicken meats.

Enrichment of Peptides using Novel C8-functionalized Magnetic Nanoparticles for Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometric Analysis

  • Song, Sun-Mi;Yang, Hyo-Jik;Kim, Jin-Hee;Shin, Seong-Jae;Park, Eun-Hye;Kim, Jeong-Kwon
    • Mass Spectrometry Letters
    • /
    • 제2권2호
    • /
    • pp.53-56
    • /
    • 2011
  • [ $C_8$ ]functionalized magnetic nanoparticles were synthesized by coating magnetic $Fe_3O_4$ nanoparticles with silicaamine groups using 3-aminopropyltriethoxysilane and by subsequently modifying the amine groups with chloro(dimethyl)octylsilane to produce octyl groups on the surface of the MNPs. The $C_8$-functionalized MNPs were used to enrich peptides from tryptic protein digests of myoglobin and ${\alpha}$-casein. The enriched peptides were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). MALDI-MS was also used to investigate desalting of the $C_8$-functionalized MNPs. Sample solutions were prepared in 1.0 M NaCl, and the successful removal of salt was observed. Enrichment with $C_8$-functionalized MNPs was very effective for separating and concentrating tryptic peptides.

Alteration of Phospholipids during the Mitophagic Process in Lung Cancer CellsS

  • Lee, Jae Won;Cho, Kyung Mi;Jung, Jae Hun;Tran, Quangdon;Jung, Woong;Park, Jongsun;Kim, Kwang Pyo
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권10호
    • /
    • pp.1790-1799
    • /
    • 2016
  • Matrix assisted laser desorption ionization (MALDI)-time of flight/mass spectrometry (TOF/MS) was applied to investigate alterations in phospholipids in mitophagic cancer cells. Several phospholipids, including phosphatidylcholines (PCs), sphingomyelins (SMs), and phosphatidylinositols (PIs), were successfully analyzed in control and mitophagy-induced H460 cells in the positive and negative ion modes. Principal component analysis was applied to differentiate the two groups. The upregulated and downregulated phospholipid species in the mitophagic cells were also represented in a heatmap. In the volcano plot (fold change > 1.3 and p value < 0.01), individual species of seven PCs, two SMs, and three PIs were selected as differentially regulated phospholipids. In particular, almost all the molecular species of PC, SM, and PI were downregulated in the mitophagic cells. Quantification of these lipids indicated that mitophagy induces altered metabolism of phospholipids. Therefore, phospholipid alterations during the mitophagic process of lung cancer cells were well characterized by MALDI-TOF/MS.

Comparison of Matrices for Optimal Analysis of Synthetic Polymers Using MALDI-TOF Mass Spectrometry

  • Yoo, Hee-Jin;Kim, Duck-Hyun;Choi, Yoon-Ji;Choi, Jung Hoon;Park, Moonhee;Shin, DongJin;Oh, YoonSeok;Kim, YangSun;Cho, Kun
    • Mass Spectrometry Letters
    • /
    • 제11권4호
    • /
    • pp.77-81
    • /
    • 2020
  • Characterization of the various chemical aspects of composite polymers is important for quality control of manufactured polymers. In this study, we compared three suitable matrices (α cyano-4-hydroxycinnamic acid [CHCA], 2,5 dihydroxy benzoic acid [2,5-DHB], and dithranol), to characterize various synthetic polymers by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Although the spectra obtained with the CHCA and 2,5-DHB matrices were generally good, in certain samples ghost peaks disappeared only when dithranol was used as the matrix. Furthermore, we examined the use of sodium trifluoroacetate (NaTFA) as an additive to reduce interference by metals and copolymers in the spectra. In conclusion, appropriate selection of a matrix, according to the characteristics of the polymer, and the use of additives to improve sensitivity are important considerations for polymer analysis and development.