Kim, Daewon;Lee, Hanlim;Park, Junsung;Choi, Wonei;Yang, Jiwon;Kang, Hyeongwoo
Korean Journal of Remote Sensing
/
v.35
no.6_3
/
pp.1187-1195
/
2019
We, for the first time, developed a Raman lidar system which can remotely detect surface CO2 volume mixing ratio (VMR). The Raman lidar system consists of the Nd: YAG laser of wavelength 355 nm with 80 mJ, an optical receiver, and detectors. Indoor CO2 cell measurements show that the accuracy of the Raman lidar system is calculated to be 99.89%. We carried out the field measurement using our Raman lidar at Pukyong National University over a seven-day period in October 2019. The results show good agreement between CO2 VMRs measured by the Raman lidar (CO2 Raman Lidar) and those measured by in situ instruments (CO2 In situ) which located 300 m and 350 m away from the Raman lidar system. The correlation coefficient (R), mean absolute error (MAE), and root mean square error (RMSE) between CO2 In situ and CO2 Raman Lidar are 0.67, 2.78 ppm, and 3.26 ppm, respectively.
Sejeong Bae ;Bokyung Son ;Taejun Sung ;Yeonsu Lee ;Jungho Im ;Yoojin Kang
Korean Journal of Remote Sensing
/
v.39
no.5_3
/
pp.1009-1029
/
2023
Urban trees play a vital role in urban ecosystems,significantly reducing impervious surfaces and impacting carbon cycling within the city. Although previous research has demonstrated the efficacy of employing artificial intelligence in conjunction with airborne light detection and ranging (LiDAR) data to generate urban tree information, the availability and cost constraints associated with LiDAR data pose limitations. Consequently, this study employed freely accessible, high-resolution multispectral satellite imagery (i.e., Sentinel-2 data) to estimate fractional tree canopy cover (FTC) within the urban confines of Suwon, South Korea, employing machine learning techniques. This study leveraged a median composite image derived from a time series of Sentinel-2 images. In order to account for the diverse land cover found in urban areas, the model incorporated three types of input variables: average (mean) and standard deviation (std) values within a 30-meter grid from 10 m resolution of optical indices from Sentinel-2, and fractional coverage for distinct land cover classes within 30 m grids from the existing level 3 land cover map. Four schemes with different combinations of input variables were compared. Notably, when all three factors (i.e., mean, std, and fractional cover) were used to consider the variation of landcover in urban areas(Scheme 4, S4), the machine learning model exhibited improved performance compared to using only the mean of optical indices (Scheme 1). Of the various models proposed, the random forest (RF) model with S4 demonstrated the most remarkable performance, achieving R2 of 0.8196, and mean absolute error (MAE) of 0.0749, and a root mean squared error (RMSE) of 0.1022. The std variable exhibited the highest impact on model outputs within the heterogeneous land covers based on the variable importance analysis. This trained RF model with S4 was then applied to the entire Suwon region, consistently delivering robust results with an R2 of 0.8702, MAE of 0.0873, and RMSE of 0.1335. The FTC estimation method developed in this study is expected to offer advantages for application in various regions, providing fundamental data for a better understanding of carbon dynamics in urban ecosystems in the future.
This paper presents the application of multiple linear regression (MLR) and artificial neural network (ANN) techniques for developing the models to predict the unconfined compressive strength (UCS) and Brazilian tensile strength (BTS) of the fiber reinforced cement stabilized fly ash mixes. UCS and BTS is a highly nonlinear function of its constituents, thereby, making its modeling and prediction a difficult task. To establish relationship between the independent and dependent variables, a computational technique like ANN is employed which provides an efficient and easy approach to model the complex and nonlinear relationship. The data generated in the laboratory through systematic experimental programme for evaluating UCS and BTS of fiber reinforced cement fly ash mixes with respect to 7, 14 and 28 days' curing is used for development of the MLR and ANN model. The data used in the models is arranged in the format of four input parameters that cover the contents of cement and fibers along with maximum dry density (MDD) and optimum moisture contents (OMC), respectively and one dependent variable as unconfined compressive as well as Brazilian tensile strength. ANN models are trained and tested for various combinations of input and output data sets. Performance of networks is checked with the statistical error criteria of correlation coefficient (R), mean square error (MSE) and mean absolute error (MAE). It is observed that the ANN model predicts both, the unconfined compressive and Brazilian tensile, strength quite well in the form of R, RMSE and MAE. This study shows that as an alternative to classical modeling techniques, ANN approach can be used accurately for predicting the unconfined compressive strength and Brazilian tensile strength of fiber reinforced cement stabilized fly ash mixes.
New and renewable energy forecasts are key technology to reduce the annual operating cost of new and renewable facilities, and accuracy of forecasts is paramount. In this study, we intend to build a model for the prediction of short-term solar power generation for 1 hour to 3 hours. To this end, this study applied two time series technique, ARIMA model without considering seasonality and SARIMA model with considering seasonality, comparing which technique has better predictive accuracy. Comparing predicted errors by MAE measures of solar power generation for 1 hour to 3 hours at four locations, the solar power forecast model using ARIMA was better in terms of predictive accuracy than the solar power forecast model using SARIMA. On the other hand, a comparison of predicted error by RMSE measures resulted in a solar power forecast model using SARIMA being better in terms of predictive accuracy than a solar power forecast model using ARIMA.
Muhammad Naqeeb Nawaz;Song-Hun Chong;Muhammad Muneeb Nawaz;Safeer Haider;Waqas Hassan;Jin-Seop Kim
Geomechanics and Engineering
/
v.33
no.1
/
pp.1-9
/
2023
The unconfined compression strength (UCS) of soils is commonly used either before or during the construction of geo-structures. In the pre-design stage, UCS as a mechanical property is obtained through a laboratory test that requires cumbersome procedures and high costs from in-situ sampling and sample preparation. As an alternative way, the empirical model established from limited testing cases is used to economically estimate the UCS. However, many parameters affecting the 1D soil compression response hinder employing the traditional statistical analysis. In this study, gene expression programming (GEP) is adopted to develop a prediction model of UCS with common affecting soil properties. A total of 79 undisturbed soil samples are collected, of which 54 samples are utilized for the generation of a predictive model and 25 samples are used to validate the proposed model. Experimental studies are conducted to measure the unconfined compression strength and basic soil index properties. A performance assessment of the prediction model is carried out using statistical checks including the correlation coefficient (R), the root mean square error (RMSE), the mean absolute error (MAE), the relatively squared error (RSE), and external criteria checks. The prediction model has achieved excellent accuracy with values of R, RMSE, MAE, and RSE of 0.98, 10.01, 7.94, and 0.03, respectively for the training data and 0.92, 19.82, 14.56, and 0.15, respectively for the testing data. From the sensitivity analysis and parametric study, the liquid limit and fine content are found to be the most sensitive parameters whereas the sand content is the least critical parameter.
Various crop models have been extensively used for estimation of the crop yields. Compared to the other models, the EPIC model uses a unified approach to simulate more than 100 types of crops. It has been successfully applied in simulating crop yields for various combinations of weather conditions, soil properties, crops, and management schemes in many countries. The objective of this study was to estimate the rice and maize yield in South Korea using the EPIC model. The input datasets for the 30 types in the 11 categories were created for the EPIC model. The EPIC model simulated rice and maize yields. The performance of the EPIC model was evaluated with the goodness-of-fit measures including Root Mean Square Error (RMSE), Relative Error (RE), Nash-Sutcliffe Efficiency Coefficient (NSEC), Mean Absolute Error (MAE), and Pearson Correelation Coefficient (r). The rice yield showed to more high accuracy than maize yield on four type of method without NSEC. Theses results showed that the EPIC model better simulated rice yields than maize yields. The results suggest that the EPIC crop model can be useful to estimate crop yield in South Korea.
This paper aims at predicting the BDI from Jan. to Dec. 2010 using such econometric techniues of the univariate time series as stochastic ARIMA-type models and Hodrick-Prescott filtering technique. The multivariate cause-effect econometric model is not employed for not assuring a higher degree of forecasting accuracy than the univariate variable model. Such a cause-effect econometric model also fails in adjusting itself for the post-sample. This article introduces the two ARIMA models and five Intervention-ARIMA models. The monthly data cover the period January 2000 through December 2009. The out-of-sample forecasting performance is compared between the ARIMA-type models and the random walk model. Forecasting performance is measured by three summary statistics: root mean squared error (RMSE), mean absolute error (MAE) and mean error (ME). The RMSE and MAE indicate that the ARIMA-type models outperform the random walk model And the mean errors for all models are small in magnitude relative to the MAE's, indicating that all models don't have a tendency of overpredicting or underpredicting systematically in forecasting. The pessimistic ex-ante forecasts are expected to be 2,820 at the end of 2010 compared with the optimistic forecasts of 4,230.
Background: The Microsoft Kinect which is a low-cost gaming device has been studied as a promise clinical gait analysis tool having satisfactory reliability and validity. However, its accuracy is only guaranteed when it is properly positioned in front of a subject. Objects: The purpose of this study was to identify the error when the Kinect was positioned at a $45^{\circ}$ angle to the longitudinal walking plane compare with those when the Kinect was positioned in front of a subject. Methods: Sixteen healthy adults performed two testing sessions consisting of walking toward and $45^{\circ}$ obliquely the Kinect. Spatiotemporal outcome measures related to stride length, stride time, step length, step time and walking speed were examined. To assess the error between Kinect and 3D motion analysis systems, mean absolute errors (MAE) were determined and compared. Results: MAE of stride length, stride time, step time and walking speed when the Kinect set in front of subjects were investigated as .36, .04, .20 and .32 respectively. MAE of those when the Kinect placed obliquely were investigated as .67, .09, .37, and .58 respectively. There were significant differences in spatiotemporal outcomes between the two conditions. Conclusion: Based on our study experience, positioning the Kinect directly in front of the person walking towards it provides the optimal spatiotemporal data. Therefore, we concluded that the Kinect should be placed carefully and adequately in clinical settings.
The prediction of the moment rotation behavior of semi-rigid connections has been the subject of extensive research. However, to improve the accuracy of these predictions, there is a growing interest in employing machine learning algorithms. This paper investigates the effectiveness of using Multi-gene genetic programming (MGGP) to predict the moment-rotation behavior of flush-end plate connections compared to that of artificial neural networks (ANN) and previous studies. It aims to automate the process of determining the most suitable equations to accurately describe the behavior of these types of connections. Experimental data was used to train ANN and MGGP. The performance of the models was assessed by comparing the values of coefficient of determination (R2), maximum absolute error (MAE), and root-mean-square error (RMSE). The results showed that MGGP produced more accurate, reliable, and general predictions compared to ANN and previous studies with an R2 exceeding 0.99, an RMSE of 6.97, and an MAE of 38.68, highlighting its advantages over other models. The use of MGGP can lead to better modeling and more precise predictions in structural design. Additionally, an experimentally-based regression analysis was conducted to obtain the rotational capacity of FECs. A new equation was proposed and compared to previous ones, showing significant improvement in accuracy with an R2 score of 0.738, an RMSE of 0.014, and an MAE of 0.024.
To aim of this study was to assess the full scan and half scan of imaging with half scan factor. Patients without a cerebral vascular disease (n = 30) and were subject to the full scan half scan, and set a region of interest in the cerebral artery from the three regions (C1, C2, C3) in the range of 7 to 8 mm. MIP (maximum intensity projection) to reconstruct the images in signal strength SNR (signal to noise ration), PSNR (peak signal noise to ratio), RMSE (root mean square error), MAE (mean absolute error) and calculated by paired t-test for use by statistics were analyzed. Scan time was half scan (4 minutes 53 seconds), the full scan (6 minutes 04 seconds). The mean measurement range (7.21 mm) of all the ROI in the brain blood vessel, was the SNR of the first C1 is completely scanned (58.66 dB), half-scan (62.10 dB), a positive correlation ($r^2=0.503$), for the second C2 SNR is completely scanned (70.30 dB), half-scan (74.67 dB) the amount of correlation ($r^2=0.575$), third C3 of a complete scan SNR (70.33 dB), half scan SNR (74.64 dB) in the amount of correlation between the It was analyzed with ($r^2=0.523$). Comparative full scan with half of SNR ($4.75{\pm}0.26dB$), PSNR ($21.87{\pm}0.28dB$), RMSE ($48.88{\pm}1.61$), was calculated as MAE ($25.56{\pm}2.2$). SNR is also applied to examine the half-scans are not many differences in the quality of the two scan methods were not statistically significant in the scan (p-value > .05) image takes less time than a full scan was used.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.