• 제목/요약/키워드: MADS

검색결과 70건 처리시간 0.029초

Family of floral homeotic genes (MADS-box genes) expressed in early flower Panax genseng

  • Yoon, Sunha;Yoon, Euisoo
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2002년도 제9차 국제심포지움 및 추계정기학술발표회
    • /
    • pp.15-15
    • /
    • 2002
  • In higher dicotyledonous plants, the floral organs are arranged in four different whorls, containing sepals, petals, stamens and carpels. petals, stamens and carpels. The specification of floral organ identity is explained by the ABC model (Weigel and Meyerowitz 1994). Expression of an A-function gene specifies sepal formation in whorl 1. the combination of A-and B-function genes specifies the formation of petals in whorl 2, B-and C-function genes spesify stamen formation in whorl 3, and expression of the C-function alone determines the formation of carpels in whorl 4. A-. B-, C-function genes have been isolated from many plant species and most of them belong to the family of MADS-box genes encoding transcription factor. In contrast to the flower of higher dicots, the perianths of genseng plants have three whorls of almost identical petaloid organs. van Tunen et al. (1993) proposed a modified ABC model, exemplified with tulip. In this model, B-function genes are expressed in whorl 1 as well as whorl 2 and 3, theefore the organs of whorl 1 and whorl 2 have the same petaloid structure. They proposed this model with the molphological data of wild type and mutant flowers of tulip, however, there are no molecular data.(중략)

  • PDF

Family of floral homeotic genes (MADS-box genes) expressed in early flower Panax genseng

  • Yoon, Sunha;Yoon, Euisoo
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2002년도 심포지엄
    • /
    • pp.98-98
    • /
    • 2002
  • In higher dicotyledonous plants, the floral organs are arranged in four different whorls, containing sepals, stamens and carpels. petals, stamens and carpels. The specification of floral organ identity is explained by the ABC model (Weigel and Meyerowitz 1994). expression of an A-function gene specifies sepal formation in whorl 1. the combination of A-and B-function genes specifies the formation of petals in whorl 2, B-and C-function genes spesify stamen formation in whorl 3, and expression of the C-function alone determines the formation of carpels in whorl 1. A-, B-, C-function genes have been isolated from many plant species and most of them belong to the family of MADS-box genes encoding transcription factor. In contrast to the flower of higher dicots, the perianths of genseng plants have three whorls of almost identical petaloid organs. van Tunen et al. (1993) proposed a modified ABC model, exemplified with tulip. In this model, B-function genes are expressed in whorl 1 as well as whorl 2 and 3, theefore the organs of whorl 1 and whorl 2 have the same petaloid structure. They proposed this model with the molphological data of wild type and mutant flowers of tulip, however, there are no molecular data. To date, B-function genes were isolated several grass plants, rice, wheat and maize. However, grass plants have highly derived flowers, without well-developed perianths. To find out how the ABC model has to be modified for the Genseng plants, we have cloned and characterized orthologs of A-, B-, C-function genes from genseng.

  • PDF

Memetic Algorithms을 적용한 영구자석 풍력발전기 최적설계 (Optimal Design of PM Wind Generator using Memetic Algorithm)

  • 박지성;안영준;김종욱;이철균;정상용
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 춘계학술대회 논문집 에너지변화시스템부문
    • /
    • pp.6-8
    • /
    • 2009
  • This paper presents the novel implementation of memetic algorithm with GA (Genetic Algorithm) and MADS (Mesh Adaptive Direct Search), which is applied for optimal design methodology of electric machine. This hybrid algorithm has been developed for obtaining the global optimum rapidly, which is effective for optimal design of electric machine with many local optima and much longer computation time. In particular, the proposed memetic algorithm has been forwarded to optimal design of direct-driven PM wind generator for maximizing the Annual Energy Production (AEP), of which design objective should be obtained by FEA (Finite Element Analysis). After all, it is shown that GA combined with MADS has contributed to reducing the computation time effectively for optimal design of PM wind generator when compared with purposely developed GA implemented with the parallel computing method.

  • PDF