• Title/Summary/Keyword: MACHINE LEARNING

Search Result 5,624, Processing Time 0.029 seconds

Analysis on Trends of No-Code Machine Learning Tools

  • Yo-Seob, Lee;Phil-Joo, Moon
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.412-419
    • /
    • 2022
  • The amount of digital text data is growing exponentially, and many machine learning solutions are being used to monitor and manage this data. Artificial intelligence and machine learning are used in many areas of our daily lives, but the underlying processes and concepts are not easy for most people to understand. At a time when many experts are needed to run a machine learning solution, no-code machine learning tools are a good solution. No-code machine learning tools is a platform that enables machine learning functions to be performed without engineers or developers. The latest No-Code machine learning tools run in your browser, so you don't need to install any additional software, and the simple GUI interface makes them easy to use. Using these platforms can save you a lot of money and time because there is less skill and less code to write. No-Code machine learning tools make it easy to understand artificial intelligence and machine learning. In this paper, we examine No-Code machine learning tools and compare their features.

Analysis of Automatic Machine Learning Solution Trends of Startups

  • Lee, Yo-Seob
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.297-304
    • /
    • 2020
  • Recently, open source automatic machine learning solutions have been applied in many fields. To apply open source automated machine learning to real world problems, you need to write code with expertise in machine learning. Writing code without machine learning knowledge is challenging. To solve this problem, the automatic machine learning solutions provided by startups are made easy to use with a clean user interface. In this paper, we review automatic machine learning solutions of startups.

Optimization of Fuzzy Learning Machine by Using Particle Swarm Optimization (PSO 알고리즘을 이용한 퍼지 Extreme Learning Machine 최적화)

  • Roh, Seok-Beom;Wang, Jihong;Kim, Yong-Soo;Ahn, Tae-Chon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.1
    • /
    • pp.87-92
    • /
    • 2016
  • In this paper, optimization technique such as particle swarm optimization was used to optimize the parameters of fuzzy Extreme Learning Machine. While the learning speed of conventional neural networks is very slow, that of Extreme Learning Machine is very fast. Fuzzy Extreme Learning Machine is composed of the Extreme Learning Machine with very fast learning speed and fuzzy logic which can represent the linguistic information of the field experts. The general sigmoid function is used for the activation function of Extreme Learning Machine. However, the activation function of Fuzzy Extreme Learning Machine is the membership function which is defined in the procedure of fuzzy C-Means clustering algorithm. We optimize the parameters of the membership functions by using optimization technique such as Particle Swarm Optimization. In order to validate the classification capability of the proposed classifier, we make several experiments with the various machine learning datas.

Analysis on Trends of Machine Learning-as-a-Service

  • Lee, Yo-Seob
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.303-308
    • /
    • 2018
  • Demand is increasing rapidly in recent years than supply to machine learning professionals. To alleviate this gap, user-friendly machine learning software that can be used by non-specialists has emerged, which is Machine Learning-as-a-Service(MLaaS). MLaaS provides services that enable businesses to easily leverage ML capabilities without expertise. In this paper, we will compare and analyze features, interfaces, supporting programming language, ML framework, and Machine Learning services of MLaaS, to help companies easily use ML service.

Analysis of Machine Learning Education Tool for Kids

  • Lee, Yo-Seob;Moon, Phil-Joo
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.235-241
    • /
    • 2020
  • Artificial intelligence and machine learning are used in many parts of our daily lives, but the basic processes and concepts are barely exposed to most people. Understanding these basic concepts is becoming increasingly important as kids don't have the opportunity to explore AI processes and improve their understanding of basic machine learning concepts and their essential components. Machine learning educational tools can help children easily understand artificial intelligence and machine learning. In this paper, we examine machine learning education tools and compare their features.

Comparison of Machine Learning Tools for Mobile Application

  • Lee, Yo-Seob
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.360-370
    • /
    • 2022
  • Demand for machine learning systems continues to grow, and cloud machine learning platforms are widely used to meet this demand. Recently, the performance improvement of the application processor of smartphones has become an opportunity for the machine learning platform to move from the cloud to On-Device AI, and mobile applications equipped with machine learning functions are required. In this paper, machine learning tools for mobile applications are investigated and compared the characteristics of these tools.

A Quantitative Analysis on Machine Learning and Smart Farm with Bibliographic Data from 2013 to 2023

  • Yong Sauk Hau
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.388-393
    • /
    • 2024
  • The convergence of machine learning and smart farm is becoming more and more important. The purpose of this research is to quantitatively analyze machine learning and smart farm with bibliographic data from 2013 to 2023. This study analyzed the 251 articles, filtered from the Web of Science, with regard to the article publication trend, the article citation trend, the top 10 research area, and the top 10 keywords representing the articles. The quantitative analysis results reveal the four points: First, the number of article publications in machine learning and smart farm continued growing from 2016. Second, the article citations in machine learning and smart farm drastically increased since 2018. Third, Computer Science, Engineering, Agriculture, Telecommunications, Chemistry, Environmental Sciences Ecology, Material Science, Instruments Instrumentation, Science Technology Other Topics, and Physics are top 10 research areas. Fourth, it is 'machine learning', 'smart farming', 'internet of things', 'precision agriculture', 'deep learning', 'agriculture', 'big data', 'machine', 'smart' and 'smart agriculture' that are the top 10 keywords composing authors' keywords in the articles in machine learning and smart farm from 2013 to 2023.

Research Trends Analysis of Machine Learning and Deep Learning: Focused on the Topic Modeling (머신러닝 및 딥러닝 연구동향 분석: 토픽모델링을 중심으로)

  • Kim, Chang-Sik;Kim, Namgyu;Kwahk, Kee-Young
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.2
    • /
    • pp.19-28
    • /
    • 2019
  • The purpose of this study is to examine the trends on machine learning and deep learning research in the published journals from the Web of Science Database. To achieve the study purpose, we used the abstracts of 20,664 articles published between 1990 and 2017, which include the word 'machine learning', 'deep learning', and 'artificial neural network' in their titles. Twenty major research topics were identified from topic modeling analysis and they were inclusive of classification accuracy, machine learning, optimization problem, time series model, temperature flow, engine variable, neuron layer, spectrum sample, image feature, strength property, extreme machine learning, control system, energy power, cancer patient, descriptor compound, fault diagnosis, soil map, concentration removal, protein gene, and job problem. The analysis of the time-series linear regression showed that all identified topics in machine learning research were 'hot' ones.

Modeling of AutoML using Colored Petri Net

  • Yo-Seob, Lee
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.420-426
    • /
    • 2022
  • Developing a machine learning model and putting it into production goes through a number of steps. Automated Machine Learning(AutoML) appeared to increase productivity and efficiency by automating inefficient tasks that occur while repeating this process whenever machine learning is applied. The high degree of automation of AutoML models allows non-experts to use machine learning models and techniques without the need to become machine learning experts. Automating the process of applying machine learning end-to-end with AutoML models has the added benefit of creating simpler solutions, generating these solutions faster, and often generating models that outperform hand-designed models. In this paper, the AutoML data is collected and AutoML's Color Petri net model is created and analyzed based on it.

Enhanced Machine Learning Algorithms: Deep Learning, Reinforcement Learning, and Q-Learning

  • Park, Ji Su;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1001-1007
    • /
    • 2020
  • In recent years, machine learning algorithms are continuously being used and expanded in various fields, such as facial recognition, signal processing, personal authentication, and stock prediction. In particular, various algorithms, such as deep learning, reinforcement learning, and Q-learning, are continuously being improved. Among these algorithms, the expansion of deep learning is rapidly changing. Nevertheless, machine learning algorithms have not yet been applied in several fields, such as personal authentication technology. This technology is an essential tool in the digital information era, walking recognition technology as promising biometrics, and technology for solving state-space problems. Therefore, algorithm technologies of deep learning, reinforcement learning, and Q-learning, which are typical machine learning algorithms in various fields, such as agricultural technology, personal authentication, wireless network, game, biometric recognition, and image recognition, are being improved and expanded in this paper.