• Title/Summary/Keyword: MACCS

Search Result 24, Processing Time 0.07 seconds

Interfacing between MAAP and MACCS to perform radiological consequence analysis

  • Kim, Sung-yeop;Lee, Keo-hyoung;Park, Soo-Yong;Han, Seok-Jung;Ahn, Kwang-Il;Hwang, Seok-Won
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1516-1525
    • /
    • 2022
  • Interfacing the output of severe accident analysis with the input of radiological consequence analysis is an important and mandatory procedure at the beginning of Level 3 PSA. Such interfacing between the severe accident analysis code MELCOR and MACCS, one of the most commonly used consequence analysis codes, is relatively tractable since they share the same chemical groups, and the related interfacing software, MelMACCS, has already been developed. However, the linking between MAAP, another frequently used code for severe accident analyses, and MACCS has difficulties because MAAP employs a different chemical grouping method than MACCS historically did. More specifically, MAAP groups by chemical compound, while MACCS groups by chemical element. An appropriate interfacing method between MAAP and MACCS has therefore long been requested by users. This study suggests a way of extracting relevant information from MAAP results and providing proper source term information to MACCS by an appropriate treatment. Various parameters are covered in terms of magnitude and manner of release in this study, and special treatment is made for a bypass scenario. It is expected that the suggested approach will provide an important contribution as a guide to interface MAAP and MACCS when performing radiological consequence analyses.

Performing a multi-unit level-3 PSA with MACCS

  • Bixler, Nathan E.;Kim, Sung-yeop
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.386-392
    • /
    • 2021
  • MACCS (MELCOR Accident Consequence Code System), WinMACCS, and MelMACCS now facilitate a multi-unit consequence analysis. MACCS evaluates the consequences of an atmospheric release of radioactive gases and aerosols into the atmosphere and is most commonly used to perform probabilistic safety assessments (PSAs) and related consequence analyses for nuclear power plants (NPPs). WinMACCS is a user-friendly preprocessor for MACCS. MelMACCS extracts source-term information from a MELCOR plot file. The current development can combine an arbitrary number of source terms, representing simultaneous releases from a multi-unit facility, into a single consequence analysis. The development supports different release signatures, fission product inventories, and accident initiation times for each unit. The treatment is completely general except that the model is currently limited to collocated units. A major practical consideration for performing a multi-unit PSA is that a comprehensive treatment for more than two units may involve an intractable number of combinations of source terms. This paper proposes and evaluates an approach for reducing the number of calculations to be tractable, even for sites with eight or ten units. The approximation error introduced by the approach is acceptable and is considerably less than other errors and uncertainties inherent in a Level 3 PSA.

Study on the Code System for the Off-Site Consequences Assessment of Severe Nuclear Accident (원전 중대사고 연계 소외결말해석 전산체계에 대한 고찰)

  • Kim, Sora;Min, Byung-Il;Park, Kihyun;Yang, Byung-Mo;Suh, Kyung-Suk
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.4
    • /
    • pp.423-434
    • /
    • 2016
  • The importance of severe nuclear accidents and probabilistic safety assessment (PSA) were brought to international attention with the occurrence of severe nuclear accidents caused by the extreme natural disaster at Fukushima Daiichi nuclear power plant in Japan. In Korea, studies on level 3 PSA had made little progress until recently. The code systems of level 3 PSA, MACCS2 (MELCORE Accident Consequence Code System 2, US), COSYMA (COde SYstem from MAria, EU) and OSCAAR (Off-Site Consequence Analysis code for Atmospheric Releases in reactor accidents, JAPAN), were reviewed in this study, and the disadvantages and limitations of MACCS2 were also analyzed. Experts from Korea and abroad pointed out that the limitations of MACCS2 include the following: MACCS2 cannot simulate multi-unit accidents/release from spent fuel pools, and its atmospheric dispersion is based on a simple Gaussian plume model. Some of these limitations have been improved in the updated versions of MACCS2. The absence of a marine and aquatic dispersion model and the limited simulating range of food-chain and economic models are also important aspects that need to be improved. This paper is expected to be utilized as basic research material for developing a Korean code system for assessing off-site consequences of severe nuclear accidents.

Development of Web-based Off-site Consequence Analysis Program and its Application for ILRT Extension (격납건물종합누설률시험 주기연장을 위한 웹기반 소외결말분석 프로그램 개발 및 적용)

  • Na, Jang-Hwan;Hwang, Seok-Won;Oh, Ji-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.219-223
    • /
    • 2012
  • For an off-site consequence analysis at nuclear power plant, MELCOR Accident Consequence Code System(MACCS) II code is widely used as a software tool. In this study, the algorithm of web-based off-site consequence analysis program(OSCAP) using the MACCS II code was developed for an Integrated Leak Rate Test (ILRT) interval extension and Level 3 probabilistic safety assessment(PSA), and verification and validation(V&V) of the program was performed. The main input data for the MACCS II code are meteorological, population distribution and source term information. However, it requires lots of time and efforts to generate the main input data for an off-site consequence analysis using the MACCS II code. For example, the meteorological data are collected from each nuclear power site in real time, but the formats of the raw data collected are different from each site. To reduce the efforts and time for risk assessments, the web-based OSCAP has an automatic processing module which converts the format of the raw data collected from each site to the input data format of the MACCS II code. The program also provides an automatic function of converting the latest population data from Statistics Korea, the National Statistical Office, to the population distribution input data format of the MACCS II code. For the source term data, the program includes the release fraction of each source term category resulting from modular accident analysis program(MAAP) code analysis and the core inventory data from ORIGEN. These analysis results of each plant in Korea are stored in a database module of the web-based OSCAP, so the user can select the defaulted source term data of each plant without handling source term input data.

Off-Site Consequence Analysis for PWR and PHWR Types of Nuclear Power Plants Using MACCS II Code (MACCS II 코드를 이용한 국내 경수로 및 중수로형 원전의 소외결말분석)

  • Jeon, Ho-Jun;Chi, Moon-Goo;Hwang, Seok-Won
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.5
    • /
    • pp.105-109
    • /
    • 2011
  • Since a severe accident, which happens in low frequency, can cause serious damages, the interests in off-site consequence analysis for a nuclear power plant have been increased after Chernobyl, TMI and Fukushima accidents. Consequences, which are the effects on health and environment caused by released radioisotopes, are evaluated using MACCS II code based on the method of Level 3 PSA. To perform a consequence analysis for the reference plants, the input data of the code were generated such as meteorological data, population distribution, release fractions, and so on. Using these input data, acute and lifetime dose as an organ, CCDF for early fatalities and latent cancer fatalities, and average individual risk were analyzed by using MACCS II code in this study. These results might contribute to establishing accident management plan and quantitative health object.

A Risk Assessment for A Korean Standard Nuclear Power Plant (한국표준형 원전의 중대사고시 MACCS 코드를 이용한 위험성평가)

  • Hwang, Seok-Won;Jae, Moo-Sung
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.3
    • /
    • pp.189-197
    • /
    • 2003
  • The Level 3 PSA being termed accident consequence analysis is defined to assess effects on health and environment caused by radioisotopes released from severe accidents of nuclear power plants. In this study consequence analysis on health effects depending on release characteristics of radioisotopes has been peformed using the 3 MACCS code in severe accidents. The results of this study may contribute to identifying the relative importance of various parameters occurred in consequence analysis as well as to assessing risk reduction accident management strategies. Especially three parameters for the purpose of consequence analysis, such as the release height, the heat content, and the duration time, are used to analyze the variation of early fatalities and latent cancer fatalities. Also, in this study risk assessment using the concept, 'products of uncertainty and consequences', has been performed using consequence of MACCS and frequency on source term category 19 scenarios from IPE (Individual Plant Examination) analysis.