• Title/Summary/Keyword: M30 high-strength bolt

Search Result 5, Processing Time 0.016 seconds

Variable amplitude fatigue test of M30 high-strength bolt in bolt-sphere joint grid structures

  • Qiu, Bin;Lei, Honggang;Yang, Xu;Zhou, Zichun;Wang, Guoqing
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.433-444
    • /
    • 2019
  • Fatigue failure of a grid structure using bolt-sphere joints is liable to occur in a high-strength bolt due to the alternating and reciprocal actions of a suspension crane. In this study, variable amplitude fatigue tests were carried out on 20 40 Cr steel alloy M30 high-strength bolts using an MTS fatigue testing machine, and four cyclic stress amplitude loading patterns, Low-High, High-Low, Low-High-Low, and High-Low-High, were tested. The scanning electron microscope images of bolt fatigue failure due to variable amplitude stress were obtained, and the fractographic analysis of fatigue fractures was performed to investigate the fatigue failure mechanisms. Based on the available data from the constant amplitude fatigue tests, the variable amplitude fatigue life of an M30 high-strength bolt in a bolt-sphere joint was estimated using both Miner's rule and the Corten-Dolan model. Since both cumulative damage models gave similar predictions, Miner's rule is suggested for estimating the variable-amplitude fatigue life of M30 high-strength bolts in a grid structure with bolt-sphere joints; the S-N fatigue curve of the M30 high-strength bolts under variable amplitude loading was derived using equivalent stress amplitude as a design parameter.

Constant amplitude fatigue test of high strength bolts in grid structures with bolt-sphere joints

  • Yang, Xu;Lei, Honggang
    • Steel and Composite Structures
    • /
    • v.25 no.5
    • /
    • pp.571-579
    • /
    • 2017
  • The grid structure with bolt-sphere joints is widely adopted by industrial plants with suspending crane. The alternating reciprocating action of the suspending crane will cause fatigue problems of the grid structure with bolt-sphere joints with respect to the rod, the cone, the sealing plate, the bolt ball and the high strength bolt; while the fatigue of the high strength bolt is the key issue of fatigue failure. Based on efficient and smooth loading equipment with the AMSLER fatigue testing machine, this paper conducted a constant amplitude fatigue test on 18 M20 and 14 M30 high strength bolts with 40Cr material, and obtained 19 valid failure points, 9 unspoiled points with more than 2 million cycles, and 4 abnormal failure points. In addition, it established the constant amplitude fatigue design method, ${[{\Delta}{\sigma}]_{{2{\times}10}}{^6=58.91MPa}$, and analyzed the stress concentration and the fatigue fracture of high strength bolts. It can be explained that the geometrical stress concentration of high-strength bolt caused by spiral burr is severe.

Estimation of Safety and Economical Efficiency of Large High Tension Bolted Joints (대직경 고장력볼트 이음부의 안전성 및 경제성 평가)

  • Sung, Ki-Tae;Kyung, Kab-Soo;Lee, Seung-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.6 s.58
    • /
    • pp.97-105
    • /
    • 2009
  • This study was conducted for the purpose of examinating the safety and economical efficiency of large high tension bolted joints. The specimen using F10T-M30 large high strength bolts has been selected and static tensile test has been conducted to evaluate the slip characteristics. In addition, finite element analysis has been carried out to estimate the number of required bolts. As a result, the average slip coefficient of M30 high strength bolts exceeded 0.4 - the standard in highway bridge design specification - and has satisfied the slip strength, which is the same as that of M22 high strength bolts. In addition, if F13T-M22 high strength bolts were applied, the number of required bolts decreased by 21%, and if F10T-M30 high strength bolts were applied, the number of required bolts decreased by 46%, that leads to the conclusion that the economical efficiency in accordance with diametering of high strength bolts was now verified.

Evaluation on Clamping force of High Strength Bolts By Temperature Parameter (온도변수에 따른 고력볼트 체결력 평가)

  • Nah, Hwan Seon;Lee, Hyeon Ju;Kim, Kang Seok;Kim, Jin Ho;Kim, Woo Bum
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.3
    • /
    • pp.399-407
    • /
    • 2008
  • The clamping of torque shear bolt is based on KS B 2819. It was misunderstood that the tension force of the TS bolt was induced generally at the break of pin-tail specified. However, the clamping forces on slip critical connections do not often meet the intended tension, as it considerably varies due to torque coefficient dependent on temperature variables despite the break of the pin tail. In this study, the tension of torque shear bolts were compared with two types of high-strength hexagon bolts by temperature parameters from ${-10^{\circ}C}$ to ${50^{\circ}C}$. Torque shear bolts showed that the average clamping force increased to 20kN as the temperature increased. In case of galvanized high-strength hexagon bolts, the average clamping forces at $0^{\circ}C$, $20^{\circ}C$, $50^{\circ}C$ were recorded over standard bolt tension, 178kN, and the worst standard deviation was 50kN. In case of high-strength hexagon bolts, ave rage clamping forces increased as the temperature went up, and the worst standard deviation was 33kN lower than that of galvanized high-strength hexagon bolts. As for the turn-of-the-nut method, at nut rotation of ${90^{\circ}}$, two types of high-strength hexagon bolts did not met the intended design bolt in tension, 162kN.it is neccessary to re-evaluate the range of turn of nut, ${120^{\circ}{\pm}30^{\circ}}$.

Experimental Study on the Load Transfer Behavior of Steel Grid Composite Deck Joint (격자형 강합성 바닥판 이음부의 하중전달 거동에 관한 실험적 연구)

  • Shin, Hyun-Seop
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.10-21
    • /
    • 2014
  • The joint of prefabricated steel grid composite deck is composed of concrete shear key and high-tension bolts. The flexural and shear strength of the joint were experimentally evaluated only by the bending and push-out test of the joint element. In this study the lateral load transfer behavior of the joint in deck structure system is experimentally evaluated. Several decks connected by the joint are prefabricated and loaded centrically and eccentrically. In the case of centrically loaded specimens, the analysis results show that for the same loading step the rotation angle of the joint with 4 high-tension bolts is larger than the case of the joint with 9 high-tension bolts. Consequently, flexural stiffness of deck and lateral load transfer decrease in the case of specimen with 4 high-tension bolts. But, in the case of eccentrically loaded specimens, it is found that there are no significant differences in the load transfer behavior. The further analysis results about the structural behavior of the joint show that lateral load transfer can be restricted by the load bearing capacity of the joint as well as punching shear strength of the slab. Furthermore, considering that high-tension bolts in the joint didn't reach to the yielding condition until the punching shear failure, increase in the number of high-tension bolts from 4 to 9 has a greater effect on the flexural stiffness of the joint and deck system than the strength of them.