• Title/Summary/Keyword: M1 gene

Search Result 3,883, Processing Time 0.028 seconds

Prevalence of Extended-spectrum β-Lactamase and Quinolone Resistance Genes in Escherichia coli Clinical Isolates and their Antibiotic Resistance (임상검체로부터 분리된 Escherichia coli 의 Extended-spectrum β-lactamase와 퀴놀론 내성 유전자의 출현빈도 및 항생제 내성)

  • Lee, Min Hyeok;Hwang, Yeoung Min;Baik, Keun Sik;Cho, Hyun Wook;Seong, Chi Nam
    • Journal of Life Science
    • /
    • v.23 no.5
    • /
    • pp.703-709
    • /
    • 2013
  • The aim of this study was to investigate the prevalence of Extended-spectrum ${\beta}$-lactamase (ESBL) gene and quinolone resistance determinant (qnr) and the pattern of antibiotic resistance in the ESBL-producing Escherichia coli clinical isolates. The 42 ESBL-producing strains from total 274 isolates were detected using a double disk synergy test. They were isolated from various specimens, such as urine (28 strains), sputum (6 strains), pus (3 strains), wound (2 strains), blood (2 strains), and tissue (1 strain). Using the PCR with the specific primers ESBL, ESBL and qnr gene types were determined. Thirty-five strains possessed one or two ESBL genes. CTX-M-1 type was the most abundant followed by CTX-M-9 type and TEM, but SHV, CTX-M-2, and CTX-M-8 gene types were not detected. qnr gene types were detected from ten isolates in the order of qnrB4, qnrB1, and qnrS. Coexistence of ESBL and qnr genes was found. ESBL-producing isolates showed high resistance against some antibiotics, such as cefotaxmie (80.0%), levofloxacin (82.9%), and ampicillin (100%). Neither a synergy effect from the coexistence of ESBL and qnr genes on antibiotic resistance nor a correlation between the production of qnr gene and quinolone resistance were found.

Inhibitory Effect of Curcumin on MDR1 Gene Expression in Patient Leukemic Cells

  • Anuchapreeda, Songyot;Thanarattanakorn, Pattra;Sittipreechacharn, Somjai;Tima, Singkome;Chanarat, Prasit;Limtrakul, Pornngarm
    • Archives of Pharmacal Research
    • /
    • v.29 no.10
    • /
    • pp.866-873
    • /
    • 2006
  • When patients with cancers are treated with chemotherapeutic agents a long time, some of the cancer cells develop the multidrug resistance (MDR) phenotype. MDR cancer cells are characterized by the overexpression of multidrug resistance1 (MDR1) gene which encodes P-glycoprotein (Pgp), a surface protein of tumor cells that functions to produce an excessive efflux and thereby an insufficient intracellular concentration of chemotherapeutic agents. A variety of studies have sought potent MDR modulators to decrease MDR1 gene expression in cancer cells. Our previous study has shown that curcumin exhibits characteristics of a MDR modulator in KB-V1 multidrug-resistant cells. The aim of this study was to further investigate the effect of curcumin on MDR1 gene expression in patient leukemic cells. The leukemic cells were collected from 78 childhood leukemia patients admitted at Maharaj Nakorn Chiang Mai Hospital, Chiang Mai, Thailand, in the period from July 2003 to February 2005. There were 61 cases of acute lymphoblastic leukemia (ALL), 14 cases of acute myeloblastic leukemia (AML), and 3 cases of chronic myelocytic leukemia (CML). There were 47 males and 31 females ranging from 1 to 15 years old. Bone marrows were collected. The leukemic cells were separated and cultured in the presence or absence of $10{\mu}M$ curcumin for 48 hours. MDR1 mRNA levels were determined by RT-PCR. It was found that curcumin reduced MDR1 gene expression in the cells from 33 patients (42%). Curcumin affected the MDR1 gene expression in 5 of 11 relapsed cases (45%), 10 of 26 cases of drug maintenance (38%), 7 of 18 cases of completed treatment (39%), and 11 of 23 cases of new patients (48%). The expression levels of MDR1 gene in leukemic patient cells as compared to that of KB-V1 cells were classified as low level (1-20%) in 5 of 20 cases (25%), medium level (21-60%) in 14 of 32 cases (44%), and high level (61-100%) in 14 of 20 cases (70%). In summary, curcumin decreased MDR1 mRNA level in patient leukemic cells, especially in high level of MDR1 gene groups. Thus, curcumin treatment may provide a lead for clinical treatment of leukemia patients in the future.

Cloning of RNA1 Gene from Saccharomyces cerevisiae (Saccharomyces cerevisiae에서 RNA1 유전자의 클로닝)

  • 송영환;고상석;이영석;강현삼
    • Korean Journal of Microbiology
    • /
    • v.27 no.2
    • /
    • pp.77-84
    • /
    • 1989
  • The temperature sensitive (ts) mutation on RNA1 gene of Saccharomyces cerevisiae prevents growth at restrictive temperature ($36^{\circ}C$) by accumulation of precursor tRNA, rRNA and mRNA (Hutchison et al., 1969; Shiokawa and Pogo, 1974; Hopper et al., 1978). RNA1 gene was cloned by complementation of the temperature sensitive growth defect of an rna1-1 mutant strain and identified by retransformation and concomitant loss of recombinant plasmid on non-selective condition. By deletion mapping, it was found that RNA1 gene resides within 3.5kb of BgII fragment.

  • PDF

Cloning and Expression of a Thermostable ${\alpha}$-Galactosidase from the Thermophilic Fungus Talaromyces emersonii in the Methylotrophic Yeast Pichia pastoris

  • Simila, Janika;Gernig, Anita;Murray, Patrick;Fernandes, Sara;Tuohy, Maria G.
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.12
    • /
    • pp.1653-1663
    • /
    • 2010
  • The first gene (${\alpha}$-gal1) encoding an extracellular ${\alpha}$-Dgalactosidase from the thermophilic fungus Talaromyces emersonii was cloned and characterized. The ${\alpha}$-gal1 gene consisted of an open reading frame of 1,792 base pairs interrupted by six introns that encoded a mature protein of 452 amino acids, including a 24 amino acid secretory signal sequence. The translated protein had highest identity with other fungal ${\alpha}$-galactosidases belonging to glycosyl hydrolase family 27. The ${\alpha}$-gal1 gene was overexpressed as a secretory protein with an N-terminal histidine tag in the methylotrophic yeast Pichia pastoris. Recombinant ${\alpha}$-Gal1 was secreted into the culture medium as a monomeric glycoprotein with a maximal yield of 10.75 mg/l and purified to homogeneity using Hisbinding nickel-agarose affinity chromatography. The purified enzyme was maximally active at $70^{\circ}C$, pH 4.5, and lost no activity over 10 days at $50^{\circ}C$. ${\alpha}$-Gal1 followed Michaelis-Menten kinetics ($V_{max}\;of\;240.3{\mu}M/min/mg,\;K_m\;of\;0.294 mM$) and was inhibited competitively by galactose ($K_m{^{obs}}$ of 0.57 mM, $K_i$ of 2.77 mM). The recombinant T. emersonii ${\alpha}$-galactosidase displayed broad substrate preference, being active on both oligo- and polymeric substrates, yet had strict specificity for the ${\alpha}$-galactosidic linkage. Owing to its substrate preference and noteworthy stability, ${\alpha}$-Gal1 is of particular interest for possible biotechnological applications involving the processing of plant materials.

Active Immunization Study of Colon Cancer Derived 1-8D Peptide in HHD Mice

  • Jung, Hun-Soon;Ahn, In-Sook;Do, Hyung-Ki;Lemonnier, Francois A.;Song, Kuk-Hyun;Do, Myoung-Sool
    • IMMUNE NETWORK
    • /
    • v.5 no.3
    • /
    • pp.157-162
    • /
    • 2005
  • Background: 1-8D gene is a member of human 1-8 interferon inducible gene family and was shown to be overexpressed in fresh colon cancer tissues. Three peptides 1-6, 3-5 and 3-7 derived from human 1-8D gene were shown to have immunogenicity against colon cancer. Methods: To study tumor immunotherapy, of three peptides we established an active immunization model using HHD mice. $D^{b-/-}{\times}{\beta}2$ microglobulin $({\beta}2m)$ null mice transgenic for a chimeric HLA-$A2.1/D^{b-}\;{\beta}2m$ single chain (HHD mice) were challenged with B16/HHD/1-8D tumor cells and were immunized with irradiated peptide-loaded RMA- S/HHD/B7.1 transfectants. In therapy model tumor growth was retarded in HHD mice that were injected with 3-5 peptide-loaded RMA-S/HHD/B7.1. In survival test vaccination with 1-8D-derived peptide protects HHD mice from tumor progression after tumor challenge. Results: These studies show that peptide 3-5 derived from 1-8D gene can be the most effective candidate for the vaccine of immunotherapy against colon cancer and highlight 1-8D gene as putative colon carcinoma associated antigens. Conclusion: We demonstrated that RMA-S/HHD/ B7.1 loaded with 1-8D peptides, especially 3-5, immunization generates potent antitumor immunity against tumor cells in HHD mice and designed active immunization as proper immunotherapeutic protocols.

Increased mRNA Stability and Expression Level of Croceibacter atlanticus Lipase Gene Developed through Molecular Evolution Process

  • Jeong, Han Byeol;Kim, Hyung Kwoun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.6
    • /
    • pp.882-889
    • /
    • 2021
  • In order to use an enzyme industrially, it is necessary to increase the activity of the enzyme and optimize the reaction characteristics through molecular evolution techniques. We used the error-prone PCR method to improve the reaction characteristics of LipCA lipase discovered in Antarctic Croceibacter atlanticus. Recombinant Escherichia coli colonies showing large halo zones were selected in tributyrin-containing medium. The lipase activity of one mutant strain (M3-1) was significantly increased, compared to the wild-type (WT) strain. M3-1 strain produced about three times more lipase enzyme than did WT strain. After confirming the nucleotide sequence of the M3-1 gene to be different from that of the WT gene by four bases (73, 381, 756, and 822), the secondary structures of WT and M3-1 mRNA were predicted and compared by RNAfold web program. Compared to the mean free energy (MFE) of WT mRNA, that of M3-1 mRNA was lowered by 4.4 kcal/mol, and the MFE value was significantly lowered by mutations of bases 73 and 756. Site-directed mutagenesis was performed to find out which of the four base mutations actually affected the enzyme expression level. Among them, one mutant enzyme production decreased as WT enzyme production when the base 73 was changed (T→ C). These results show that one base change at position 73 can significantly affect protein expression level, and demonstrate that changing the mRNA sequence can increase the stability of mRNA, and can increase the production of foreign protein in E. coli.

Induction of cancer cell-specific death via MMP2 promoterdependent Bax expression

  • Seo, Eun-Jeong;Kim, Se-Woon;Jho, Eek-hoon
    • BMB Reports
    • /
    • v.42 no.4
    • /
    • pp.217-222
    • /
    • 2009
  • Controlled gene expression in specific cells is a valuable tool for gene therapy. We attempted to determine whether the lentivirus-mediated Tet-On inducible system could be applied to cancer gene therapy. In order to select the genes that induce cancer cell death, we compared the ability of the known pro-apoptotreic genes, Bax and tBid, and a cell cycle inhibitor, p21cip1/waf1, and determined that Bax was the most effective. For the cancer cell-specific expression of $rtTA2^S$-M2, we tested the matrix metalloproteinase-2 (MMP-2) promoter and determined that it is highly expressed in cancer cell lines, including SNU475 cells. The co-transduction of two lentiviruses that contain sequences for TRE-Bax and $rtTA2^S$-M2, the expression of which is controlled by the MMP-2 promoter, resulted in the specific cell death of SNU475, whereas other cells with low MMP-2 expression did not evidence significant cell death. Our data indicate that the lentivirus-mediated Tet-On system using the cancer-specific promoter is applicable for cancer gene therapy.

Localization of MAK18 gene on chromosome VIII of saccharomyces cerevisiae (Saccharomyces cerevisiae의 염색체 VIII상의 MAK 18 유전자 국소화)

  • 윤순찬;이현숙;이창원
    • Korean Journal of Microbiology
    • /
    • v.26 no.4
    • /
    • pp.318-323
    • /
    • 1988
  • MAK18 gene of Saccharomyces cerevisiae, needed for M1 replication, was mapped within 2cM of PET3 on chromosome VIII. From 38kb clone pRE66 carrying SPO11 and PET3, we have localized MAK18 gene whose insert is 2.8kb. MAK18 gene is Iocalized on about 9kb distance from PET3 and about 18kb distance from SPO11 on chromosome VIII.

  • PDF

Pyramiding transgenes for potato tuber moth resistance in potato

  • Meiyalaghan, Sathiyamoorthy;Pringle, Julie M.;Barrell, Philippa J.;Jacobs, Jeanne M.E.;Conner, Anthony J.
    • Plant Biotechnology Reports
    • /
    • v.4 no.4
    • /
    • pp.293-301
    • /
    • 2010
  • The feasibility of two strategies for transgene pyramiding using Agrobacterium-mediated transformation was investigated to develop a transgenic potato (Solanum tuberosum L. cv. Iwa) with resistance to potato tuber moth (PTM) (Phthorimaea operculella (Zeller)). In the first approach, cry1Ac9 and cry9Aa2 genes were introduced simultaneously using a kanamycin (nptII) selectable marker gene. The second approach involved the sequential introduction (re-transformation) of a cry1Ac9 gene, using a hygromycin resistance (hpt) selectable marker gene, into an existing line transgenic for a cry9Aa2 gene and a kanamycin resistance (nptII) selectable marker gene. Multiplex polymerase chain reaction (PCR) confirmed the presence of the specific selectable marker gene and both cry genes in all regenerated lines. The relative steady-state level of the cry gene transcripts in leaves was quantified in all regenerated lines by real-time PCR analysis. Re-transformation proved to be a flexible approach to effectively pyramid genes for PTM resistance in potato, since it allowed the second gene to be added to a line that was previously identified as having a high level of resistance. Larval growth of PTM was significantly inhibited on excised greenhouse-grown leaves in all transgenic lines, although no lines expressing both cry genes exhibited any greater resistance to PTM larvae over that previously observed for the individual genes. It is anticipated that these lines will permit more durable resistance by delaying the opportunities for PTM adaptation to the individual cry genes.

Inductive Effects of Ginseng Saponins on the Rat LDH A-gene and the Synthetic rate of Hepatocyte DNA in Regenerating Rat Liver Cells

  • Yoo, Kye-Jin;Lee, Kwang-Youl;Lee, Seung-Ki
    • Proceedings of the Ginseng society Conference
    • /
    • 1990.06a
    • /
    • pp.58-64
    • /
    • 1990
  • The effects of ginseng saponins, G-Rbl and G-Rc on the rat liver LDH A-gene transcnptional activity was investigated during pro-replicative phase of rat liver after partial hepatectomy. Changes in LDH A-mRNA levels in regenerating rat liver after intraperitoneal administrations of G-Rbl of G-Rc were tested by slot blot hybridization methods. The results showed that G-Rbl (1 mg/100g B.W) and G-Rc (1 ma/100g B.W) caused marked increases of LDH A-mRNA contents by respectively 1.9- and 1.5-fold in rat liver at 5·hours after partial hepatectomy. Dose dependent effect of G-Rbl and G-Rc (1-25 mg/100g B.W) on the LDH A-mRNA levels on regenerating rat liver were also analyzed. The maximal in- creases of liver LDH A-mRNA levels were observed with the doses of 1 mg for G-Rbl and 5 mg for G-Rc However, when the administration doses of G-Kbl and G-Rc were increased to 20 mg, G-Rbl caused a marked decrease of LDH A-mRNA level to 61% of those in sham-operated rat liver In contrast, G-Rc slightly decreased the liver LDH A-mRNA contents by 30% as compared to those of the maximum value but still maintained 22% higher LDH A-mRNA levels then those of sham-operated rate liver. On the basis of these experimental results, we conclude that ginseng saponin, G-Rb 1 and G·Rc have stimulatory effect at the lower concentration (1 mg/100g B.W) and inhibitory effect at the higher concentration (20 moi loos 5.W) on the LDH A-gene transcription during regeneration of rat liver, Additionally we also investigated the stimulatory effects of ginsenosides on the protein and DNA synthetic activities in hepatocyte primary cell cultures isolated from regenerating rat liver. Both of G·Rc and -Re increased the synthetic rates of hepatocytes proteins and DNA at the administration doses of 50 ug and 100 ug/3 ml/dish respectively representing 1.3-1.6 fold increases. From these results we postulate that G-Rc and -Re may have a mitogen enhancer activity for the hepatocyte proliferation during rat liver regeneration period. Keywords Inductive effects of ginsenosides, G-Rb, -Rc, and -Re, rat LDH A-gene transcription, the sin thetic rate of proteins and DNA in regeneration rat liver.

  • PDF