• Title/Summary/Keyword: M-solution

Search Result 8,704, Processing Time 0.035 seconds

Effects of Sulfate Ion Concentration in Nutrient Solution on the Growth and Quality of Artemisia mongolicar var. tenuifolia (배양액 내의 황산이온 농도가 참쑥의 생육과 품질에 미치는 영향)

  • Lee, Yun-Jeong;Park, Kuen-Woo;Suh, Eun-Joo;Cheong. Jin-Cheol
    • Journal of Bio-Environment Control
    • /
    • v.7 no.1
    • /
    • pp.55-61
    • /
    • 1998
  • This experiment was conducted to evaluate the effects of sulfate ion concentration in nutrient solution on the growth and qualify of Mongolian wormwood (Artemisia mongolica var. tenuifolia). Sulfate ion concentration was treated 0, 0.5, 1, 2 and 3mM using the modified nutrient solution composition for herb plants developed by European Vegetable R & D Center in Belgium. The growth of Mongolian wormwood was good at 3mM treatment and dry weight was best at 3mM treatment, Chlorophyll content increased with sulfate ion concentration. Mineral content did not show any significant difference among treatments. But Ca content in tissue markedly decreased at 3mM treatment. Sulfate ion uptake increased in proportion to sulfate ion concentration in nutreint solution, the higher sulfate ion concentration, the more uptake of sulfate ion by plant. At 1mM sulfate ion treatment, essential oil content was best, but the higher sulfate ion concentration resulted in decrease of essential oil content.

  • PDF

Cryopreservation of chrysanthemum shoot tips using the droplet-vitrification technique (작은방울-유리화법에 의한 국화 신초의 초저온동결보존)

  • Lee, Yoon-Keol;Park, Sang-Un;Kim, Haeng-Hoon
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.2
    • /
    • pp.227-233
    • /
    • 2011
  • This study aimed at developing cryopreservation protocol for chrysanthemum (Dendranthema grandiflora Tzelevcv. peak) shoot apices based on droplet-vitrification procedure, which is a combination of droplet-freezing and solution based vitrification. Progressive preculture of shoot apices in liquid MS medium supplemented with 0.3 and 0.7 M sucrose for 31 and 17 hours, respectively, was found optimum among preculture treatments tested. The composition of both loading and vitrification solutions significantly affected recovery growth of shoot tips before and after cryopreservation. Balancing glycerol and sucrose concentrations in the solutions was beneficial for recovery growth. The highest recovery after cryopreservation was observed when apical shoot tips were extracted from 4-week-old in vitro plantlets, progressively precultured with 0.3-0.5-0.7 M sucrose for 32-16-6 hours, respectively, then treated with loading solution comprising of 1.9 M glycerol + 0.5 M sucrose (35% PVS3 solution). Apices were then dehydrated with the vitrification solution consisted of 50% glycerol + 50% sucrose for 90 minutes then directly immersed in liquid nitrogen.

Preparation of Magnetite Nanoparticles by Two Step Reaction (2단계 반응에 의한 마그네타이트 나노입자의 제조)

  • Shin, Dae-Kyu;Riu, Doh-Hyung
    • Journal of Powder Materials
    • /
    • v.15 no.2
    • /
    • pp.148-155
    • /
    • 2008
  • Nano magnetite particles have been prepared by two step reaction consisting of urea hydrolysis and ammonia addition at certain ranges of pH. Three different concentrations of aqueous solution of ferric ($Fe^{3+}$) and ferrous ($Fe^{2+}$) chloride (0.3 M-0.6 M, and 0.9 M) were mixed with 4 M urea solution and heated to induce the urea hydrolysis. Upon reaching at a certain pre-determined pH (around 4.7), 1 M ammonia solution were poured into the heated reaction vessels. In order to understand the relationship between the concentration of the starting solution and the final size of magnetite, in-situ pH measurements and quenching experiments were simultaneous conducted. The changes in the concentration of starting solution resulted in the difference of the threshold time for pH uprise, from I hour to 3 hours, during which the akaganeite (${\beta}$-FeOOH) particles nucleated and grew. Through the quenching experiment, it was confirmed that controlling the size of ${\beta}$-FeOOH and the attaining a proper driving force for the reaction of ${\beta}$-FeOOH and $Fe^{2+}$ ion to give $Fe_3O_4$ are important process variables for the synthesis of uniform magnetite nanoparticles.

Effect of osmotic potential on germination of tomato seed

  • Kim, Min Geun;Park, Sunyeob;Kim, Du Hyun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.214-214
    • /
    • 2017
  • Seeds of Tomato (Lycopersicon esculentum Mill.) have demanded high quality because of their high cost of seed. The optimization of the seed priming techniques that have positive effect on fast and uniform germination becomes important at the commercial level. Several factors such as solution composition, osmotic potential, and treatment duration affect seed priming response. In this study, osmotic potentials of priming solution and germination characteristics of primed seed were investigated to clarify the effects different inorganic salt types and the duration. Tomato seeds were primed in osmotic solutions that were osmotic potential ranged -1.54 to -0.45 MPa in an aerated solution of PEG 8000 (17%, 22%, 27%), and inorganic salt solution of $KNO_3$, $Na_2SO_4$, and $K_2SO_4$ (100, 200, 300mM). The seeds were treated at $20^{\circ}C$ for 2, 4, and 6 days. After each treatment, the seeds were dried to moisture content ranged 5-8% at $25^{\circ}C$. Four replications of 25 seeds per each treatments were placed in 10-cm petri dishes containing two filter papers and 3 ml of $dH_2O$ and incubated at $20^{\circ}C/30^{\circ}C$ and $15^{\circ}C$ and seedlings evaluated for abnormality after 14 days of incubation. Seed water potential (${\psi}$) was correlated with water potential of priming solution ($r^2=0.86$). Seeds primed in 100mM $KNO_3$ resulted the highest germination rate (GR, $63.9 %{\cdot}day^{-1}$) and lowest mean germination time (MGT, 2.0 days) comparing to untreated control ($23.9%{\cdot}day^{-1}$ of germination rate and 4.1 days of MGT) at $20/30^{\circ}C$, even though 96% of germination percentage were not different. Seeds primed in 100mM $KNO_3$ (${\psi}=-0.45MPa$) for 4 days showed ${\psi}=-0.38MPa$. Priming in $Na_2SO_4$, $K_2SO_4$, and PEG solution for 6 days improved MGT and GR, but not significantly than 4 days of treatment. Additionally, stepwise osmotic solution treatment with 100mM and 300mM concentration for 6 day did not showed differences with single treatment. In relation to osmotic potentials, identical osmotic potential in different inorganic salt solution showed different effect on germination characteristics.

  • PDF

Preparation of Soft Etchant to Improve Adhesion Strength between Photoresist and Copper Layer in Copper Clad Laminates (CCL 표면과 포토리지스트와의 접착력 향상 위한 Soft 에칭액의 제조)

  • Lee, Soo;Moon, Sung-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.512-521
    • /
    • 2015
  • In this research, environmental friendly organic acid containing microetching system to improve adhesion strength between photoresist resin and Copper Clad Laminate(CCL) was developed without using strong oxidant $H_2O_2$. Etching rate and surface contamination on CCL were examined with various etching conditions with different etchants, organic acids and additives. to develope an optimum microetching condition. Etching solution with 0.04 M acetic acid showed the highest etching rate $0.4{\mu}m/min$. Etching solution with the higher concentration of APS showed the higher etching rate but surface contamination on CCL is very serious. In addition, stabilizer solution also played an important role to control the surface contamination. As a result of research, the etching solution containing 0.04 M of acetic acid, 0.1 M of APS with 4 g/L of stabilizer solution(ST-1) was best to improve adhesion between CCL and photoresist resin as well as showed the most clean and rough surface with the etching rate of $0.37{\mu}m/min$.

Stripping of Ferric Chloride by Mineral Acid Solution from the Loaded Alamine336 Phase (Alamine336에 추출(抽出)된 염화(鹽化) 제 2철(鐵)의 무기산용액(無機酸溶液)에 의한 탈거(奪去))

  • Lee, Man-Seung;Chae, Jong-Gwee
    • Resources Recycling
    • /
    • v.17 no.5
    • /
    • pp.37-43
    • /
    • 2008
  • Stripping experiments of iron from the loaded Alamine336 by sulfurous, chloric and sulfuric acid solutions have been performed by varying the concentration of acid and stripping conditions. The stripping percentage of iron decreased with the increase of HCl and $H_{2}SO_4$ concentration, while that increased with the increase of $H_{2}SO_3$ concentration up to 3 M. Stripping temperature had adverse effect on the stripping percentage of iron in the stripping by $H_{2}SO_3$ solution, while the stripping percentage of iron by HCl solution increased with the increase of temperature. Stripping isotherm of iron by 0.1 M HCl and 0.1 M $H_{2}SO_4$ solution indicated that three and four stripping stages could result in a solution containing 0.05 M iron at an O/A ratio of 1/10 from the loaded Alamine336 phase where iron concentration was 0.5 M.

Comparison of Solvent Extraction of Iron(III) from Chloride Solution between Alamine336 and TBP by Using Extraction Isotherm (등온적출곡선(等溫摘出曲線)에 의한 염산용액(鹽酸溶液)에서 TBP와 Alamine336의 철 추출(抽出) 비교(比較))

  • Lee, Man-Seung;Kwak, Young-Ki
    • Resources Recycling
    • /
    • v.17 no.3
    • /
    • pp.29-34
    • /
    • 2008
  • Solvent extraction behaviors of iron(III) from chloride solution at high ionic strength condition between Alamine336 and TBP were compared by using MaCabe-Thiele diagram. Extraction isotherms of iron by the two extractants were obtained by calculating the equilibrium concentrations of iron in both phases from the initial extraction conditions. In calculating the equilibrium concentration of iron, chemical equilibria in the aqueous phase and mass balance together with the solvent extraction reaction were considered. MaCabe-Thiele diagram of iron by 1M Alamine336 indicated that two extraction stages could lead to complete extraction of 0.5M iron from 3M HCl solution at an A/O ratio of 6/5. The extraction power of 1M Alamine336 was found to be the same as 2-3M TBP. MaCabe-Thiele diagram together with the physical properties of the two extractants indicated that Alamine336 is superior to TBP in extracting ferric iron from chloride solution.

Effect of pH on the Synthesis of Hydroxyapatite (수산화아파타이트 합성시 pH의 영향)

  • 김수룡;이병민;박용갑
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.11
    • /
    • pp.885-891
    • /
    • 1991
  • Calcium hydroxyapatite have been synthesized by a direct precipitation reaction between 0.05 M calcium hydroxide suspension and 0.3 M orthophosphoric acid solution. 0.01 M calcium hydroxide solution was added during the reaction in order to increase the total Ca/P mol ration and reaction pH of the solution. The stoichiometric hydroxyapatite was synthesized over 1.75 as total Ca/P mol ratio, but the calcium-deficient hydroxyapatite was prepared under 1.725 as total Ca/P mol ratio. The nonstoichiometry of the precipitates were interpreted in terms of the pH change during the reaction.

  • PDF

Effects of Diurnal Alternation of Nutrient Solution Salinity on Growth and Fruit Quality of Tomatoes Hydroponically Grown in NFT System (NFT 수경재배시스템에서 주/야 양액농도변환이 토마토의 생육 및 품질에 미치는 영향)

  • Kim Ki-Deog;Lee Eung-Ho;Lee Jae-Wook;Lee Byoung-Yil;Son Jung-Eek;Chun Chang-Hoo
    • Journal of Bio-Environment Control
    • /
    • v.15 no.1
    • /
    • pp.53-68
    • /
    • 2006
  • This experiment was conducted to investigate the effects of diurnal alternation of nutrient solution salinity on growth and fruit quality of tomatoes (Lycoperisicon esculentum cv. 'House momotaro') hydroponically grown in root intercept bag-NFT (RIB-NFT) system. Plant height was the lowest in the high concentration during daytime (6/1 $dS\;m^{-1}$, day/night). Yield was very high in the concentration of 1/1 $dS\;m^{-1}$, it decreased with increasing the concentration of nutrient Yield was higher at low concentration (4/1 $dS\;m^{-1}$) at nighttime compared to the same concentration (4/4 $dS m^{-1}$) at daytime and nighttime, and the reverse (1/4 $dS\;m^{-1}$) was similar to the control (perlite culture). Yield was greatly reduced by higher concentration at daytime than nighttime, and the decrease was alleviated by lower concentration at nighttime. With increasing the concentration of nutrient solution during daytime, sugar content of tomato fruit was increased, but yield was decreased. In the other experiment, tomato plants were hydropoically cultured in NFT system diurnally alternated between Aichi's solution and $Ca(NO_3)_2$ solution. $Ca(NO_3)_2$ solution was supplied for 4 hours from 10:00 to 14:00 at daytime and from 22:00 to 2:00 at nighttime, respectively, and Aichi's solution was supplied for the time except the 4 hours. Ca content of leaves and sugar content of fruit were increased by supplying $Ca(NO_3)_2$ solution at daytime compared to nighttime, but plant growth was greatly suppressed by supplying $Ca(NO_3)_2$ solution with the concentration of 4 $dS\;m^{-1}(4/4^{Ca}\;dS\;m^{-1})$ at nighttime.

Cellular Structural Change of Barley Seedling on Different Salt Concentration under Hydroponic Culture (보리 유묘의 염농도에 따른 세포의 형태반응)

  • 이석영;김충수
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.4
    • /
    • pp.481-486
    • /
    • 1995
  • The salt stress at seedling stage of winter barley was examined in different concentrations of NaCl containing 1/2 Hoagland solution. Fresh weight of seedling at 30 days after seeding was highest at 25mM of NaCl concentration containing 1/2 Hoagland solution but if the NaCl concentration was more than 50mM it began to decrease seriously. Water content in plant was decreased according to increase of NaCl concentration in 1/2 Hoagland solution, so physiological mechanism of NaCl in barley was different from saline plant. Stoma number per cm$^2$ of first leaf was higher than that of control in case of stressed by NaCl but in that case the leaf length was decreased so the number of stoma per first leaf was slightly decreased. Chloroplast shape was not changed by 75mM of high NaCl contained 1/2 Hoagland solution but cell division at root growing point was inhibited by 75mM of NaCl. As the result of salt stress mitochondria was ruined in structure and irregular solid was found to be transfered from the cytoplasm to the cell wall in root growing point.

  • PDF