• Title/Summary/Keyword: M-cadherin

Search Result 62, Processing Time 0.04 seconds

Potential Mechanisms of Benzyl Isothiocyanate Suppression of Invasion and Angiogenesis by the U87MG Human Glioma Cell Line

  • Zhu, Yu;Zhang, Ling;Zhang, Guo-Dong;Wang, Hong-Ou;Liu, Ming-Yan;Jiang, Yuan;Qi, Li-Sha;Li, Qi;Yang, Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.19
    • /
    • pp.8225-8228
    • /
    • 2014
  • Glioma is one of the most common tumors in China and chemotherapy is critical for its treatment. Recent studies showed that benzyl isothiocyanate (BITC) could inhibit the growth of glioma cells, but the mechanisms are not fully understood. This study explored the inhibitory effect of BITC on invasion and angiogenesis of U87MG human glioma cells in vitro and in vivo, as well as potential mechanisms. It was found that BITC could inhibit invasion and angiogenesis of human glioma U87MG cells by inducing cell cycle arrest at phase G2/M. It also was demonstrated that BITC decreased expression of cyclin B1, p21, MMP-2/9, VE-cadherin, CD44, CXCR4 and MTH1, the activity of the telomerase and $PKC{\zeta}$ pathway. Microarray analysis was thus useful to explore the potential target genes related to tumorigenic processes. BITC may play important roles in the inhibition of invasion and angiogenesis of human glioma cells.

LIMK1/2 are required for actin filament and cell junction assembly in porcine embryos developing in vitro

  • Kwon, Jeongwoo;Seong, Min-Jung;Piao, Xuanjing;Jo, Yu-Jin;Kim, Nam-Hyung
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.10
    • /
    • pp.1579-1589
    • /
    • 2020
  • Objective: This study was conducted to investigate the roles of LIM kinases (LIMK1 and LIMK2) during porcine early embryo development. We checked the mRNA expression patterns and localization of LIMK1/2 to evaluate their characterization. We further explored the function of LIMK1/2 in developmental competence and their relationship between actin assembly and cell junction integrity, specifically during the first cleavage and compaction. Methods: Pig ovaries were transferred from a local slaughterhouse within 1 h and cumulus oocyte complexes (COCs) were collected. COCs were matured in in vitro maturation medium in a CO2 incubator. Metaphase II oocytes were activated using an Electro Cell Manipulator 2001 and microinjected to insert LIMK1/2 dsRNA into the cytoplasm. To confirm the roles of LIMK1/2 during compaction and subsequent blastocyst formation, we employed a LIMK inhibitor (LIMKi3). Results: LIMK1/2 was localized in cytoplasm in embryos and co-localized with actin in cell-to-cell boundaries after the morula stage. LIMK1/2 knockdown using LIMK1/2 dsRNA significantly decreased the cleavage rate, compared to the control group. Protein levels of E-cadherin and β-catenin, present in adherens junctions, were reduced at the cell-to-cell boundaries in the LIMK1/2 knockdown embryos. Embryos treated with LIMKi3 at the morula stage failed to undergo compaction and could not develop into blastocysts. Actin intensity at the cortical region was considerably reduced in LIMKi3-treated embryos. LIMKi3-induced decrease in cortical actin levels was attributed to the disruption of adherens junction and tight junction assembly. Phosphorylation of cofilin was also reduced in LIMKi3-treated embryos. Conclusion: The above results suggest that LIMK1/2 is crucial for cleavage and compaction through regulation of actin organization and cell junction assembly.

Lentivirus-mediated shRNA Interference Targeting SLUG Inhibits Lung Cancer Growth and Metastasis

  • Wang, Yao-Peng;Wang, Ming-Zhao;Luo, Yi-Ren;Shen, Yi;Wei, Zhao-Xia
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.10
    • /
    • pp.4947-4951
    • /
    • 2012
  • Objective: Lung cancer is a deadly cancer, whose kills more people worldwide than any other malignancy. SLUG (SNAI2, Snail2) is involved in the epithelial mesenchymal transition in physiological and in pathological contexts and is implicated in the development and progression of lung cancer. Methods: We constructed a lentivirus vector with SLUG shRNA (LV-shSLUG). LV-shSLUG and a control lentivirus were infected into the non-small cell lung cancer cell A549 and real-time PCR, Western blot and IHC were applied to assess expression of the SLUG gene. Cell proliferation and migration were detected using MTT and clony formation methods. Results: Real-time PCR, Western Blot and IHC results confirmed down-regulation of SLUG expression by its shRNA by about 80%~90% at both the mRNA and protein levels. Knockdown of SLUG significantly suppressed lung cancer cell proliferation. Furthermore, knockdown of SLUG significantly inhibited lung cancer cell invasion and metastasis. Finally, knockdown of SLUG induced the down-regulation of Bcl-2 and up-regulation of E-cadherin. Conclusion: These results indicate that SLUG is a newly identified gene associated with lung cancer growth and metastasis. SLUG may serve as a new therapeutic target for the treatment of lung cancer in the future.

Inhibition of p90RSK activation sensitizes triple-negative breast cancer cells to cisplatin by inhibiting proliferation, migration and EMT

  • Jin, Yujin;Huynh, Diem Thi Ngoc;Kang, Keon Wook;Myung, Chang-Seon;Heo, Kyung-Sun
    • BMB Reports
    • /
    • v.52 no.12
    • /
    • pp.706-711
    • /
    • 2019
  • Cisplatin (Cis-DDP) is one of the most widely used anti-cancer drugs. It is applicable to many types of cancer, including lung, bladder, and breast cancer. However, its use is now limited because of drug resistance. p90 ribosomal S6 kinase (p90RSK) is one of the downstream effectors in the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) pathway and high expression of p90RSK is observed in human breast cancer tissues. Therefore, we investigated the role of p90RSK in the Cis-DDP resistance-related signaling pathway and epithelial-mesenchymal transition (EMT) in breast cancer cells. First, we discovered that MDA-MB-231 cells exhibited more Cis-DDP resistance than other breast cancer cells, including MCF-7 and BT549 cells. Cis-DDP increased p90RSK activation, whereas the inactivation of p90RSK using a small interfering RNA (siRNA) or dominant-negative kinase mutant plasmid overexpression significantly reduced Cis-DDP-induced cell proliferation and migration via the inhibition of matrix metallopeptidase (MMP)2 and MMP9 in MDA-MB-231 cells. In addition, p90RSK activation was involved in EMT via the upregulation of mRNA expression, including that of Snail, Twist, ZEB1, N-cadherin, and vimentin. We also investigated NF-κB, the upstream regulator of EMT markers, and discovered that Cis-DDP treatment led to NF-κB translocation in the nucleus as well as its promoter activity. Our results suggest that targeting p90RSK would be a good strategy to increase Cis-DDP sensitivity in triple-negative breast cancers.

Effects of Promoter Methylation on the Expression Levels of Plakoglobin Gene in Both the ARO Thyroid Cancer Cell Line and Cancer Tissues

  • Han, Kyung-Hee;Kim, Tai-Jeon
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.41 no.4
    • /
    • pp.180-188
    • /
    • 2009
  • Plakoglobin (PKG) is a protein linking cadherin adhesion receptors to the actin cytoskeleton and its overexpression has been known to suppress cell proliferation and tumorigenesis in thyroid cancer. We investigated the effect of 5-aza-2'-deoxycytidine (5-Aza-CdR), a DNA methyltransferase inhibitor, on the methylation status of the promoter and the expression of the plakoglobin gene in a thyroid carcinoma cell line (ARO) and papillary thyroid carceinoma. In cultures of ARO cell line incubated without 5-Aza-2'-deoxycytidine (5-Aza-CdR), five of the fifteen CpG sites in the promoter spanning -225 and -54 were methylated at 4.2 - 12.5%. When the cells were treated with 5-Aza-CdR, all the methylated CpG sites were induced to be demethylated except one. In addition, a new methylation at one CpG site, CpG4, was identified at level of 12.0%. The expression level of PKG decreased approximately 10-fold in the 5-Aza-CdR treated cells compared to untreated cells. Different pattern of promoter methylation and expression of PKG was also observed in the tissue samples. CpG10 and CpG12 sites were methylated at 9.0-27.0% in normal tissues. However, in cancer tissues, CpG5 and CpG10 sites were methylated at 10.0-22.0%. Three of ten normal thyroid tissue samples and one of thirteen papillary carcinoma tumor samples showed increased PKG mRNA expression level. PKG protein expression analyzed by the immunohistochemical staining showed higher expression in the tumor compared with normal.

  • PDF

Increased Hypermethylation of Glutathione S-Transferase P1, DNA-Binding Protein Inhibitor, Death Associated Protein Kinase and Paired Box Protein-5 Genes in Triple-Negative Breast Cancer Saudi Females

  • Hafez, Mohamed M.;Al-Shabanah, Othman A.;Al-Rejaie, Salim S.;Al-Harbi, Naif O.;Hassan, Zeinab K.;Alsheikh, Abdulmalik;Theyab, Abdurrahman I. Al;Aldelemy, Meshan L.;Sayed-Ahmed, Mohamed M.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.2
    • /
    • pp.541-549
    • /
    • 2015
  • Triple negative breast cancer (TNBC) is an aggressive subtype of breast cancer (BC) with higher metastatic rate and both local and systemic recurrence compared to non-TNBC. The generation of reactive oxygen species (ROS) secondary to oxidative stress is associated with DNA damage, chromosomal degradation and alterations of both hypermethylation and hypomethylation of DNA. This study concerns differential methylation of promoter regions in specific groups of genes in TNBC and non-TNBC Saudi females in an effort to understand whether epigenetic events might be involved in breast carcinogenesis, and whether they might be used as markers for Saudi BCs. Methylation of glutathione S-transferase P1 (GSTP1), T-cadherin (CDH13), Paired box protein 5 (PAX5), death associated protein kinase (DAPK), twist-related protein (TWIST), DNA-binding protein inhibitor (ID4), High In Normal-1 (HIN-1), cyclin-dependent kinase inhibitor 2A (p16), cyclin D2 and retinoic acid receptor-${\beta}$ ($RAR{\beta}1$) genes was analyzed by methylation specific polymerase chain reaction (MSP) in 200 archival formalin-fixed paraffin embedded BC tissues divided into 3 groups; benign breast tissues (20), TNBC (80) and non-TNBC (100). The relationships between methylation status, and clinical and pathological characteristics of patients and tumors were assessed. Higher frequencies of GSTP1, ID4, TWIST, DAPK, PAX5 and HIN-1 hypermethylation were found in TNBC than in non-TNBC. Hypermethylation of GSTP1, CDH13, ID4, DAPK, HIN-1 and PAX5 increased with tumor grade increasing. Other statistically significant correlations were identified with studied genes. Data from this study suggest that increased hypermethylation of GSTP1, ID4, TWIST, DAPK, PAX5 and HIN-1 genes in TNBC than in non-TNBC can act as useful biomarker for BCs in the Saudi population. The higher frequency of specific hypermethylated genes paralleling tumor grade, size and lymph node involvement suggests contributions to breast cancer initiation and progression.

Indol-3-Carbinol Regulated Tight Junction Permeability and Associated-Protein Level and Suppressed Cell Invasion in Human Colon Cancer Cell Line, HT-29 (인돌 (Indol-3-Carbinol)이 인체대장암세포 HT-29 세포의 투과성 밀착결합조절과 세포 침윤성 억제에 미치는 영향)

  • Kim, Sung-Ok;Choi, Yung-Hyun;Choe, Won-Kyung
    • Journal of Nutrition and Health
    • /
    • v.41 no.1
    • /
    • pp.13-21
    • /
    • 2008
  • To determine whether indol-3-carbinol (BC, $C_9H_9NO$), an autolysis product of a glucosinolate and a glucobrassicin in vegetables, regulated tight junction proteins (TJ) and suppressed cell invasion in colon cancer cells, this experiment was performed. Our results indicate that I3C inhibit cell growth of HT-29 cells in a dose (0, 50, $100{\mu}M$) and time (0, 24 and 48h) dependent manner. Using the wound healing and matrigel invasion study, respectively, BC inhibits the cell motility and invasion of the ovarian cancer cell line. The TEER values were increased in HT-29 cells grown in transwells treated with BC, reversely, paracellular permeability was decreased in those of condition. Claudin-1, claudin-5, ZO-1 and occuldin have been shown to be positively expressed in HT-29 coloncancer cells. I3C occurs concurrently with a significant decrease in the levels of those of proteins in HT-29 cells. But E-cadherin level in the HT-29 was increased by I3C. The reduction of claudin-1 and claudin-5 protein levels occurred post-transcriptionaly since their mRNA levels are no difference by I3C. Therefore, our results suggest that I3C may be expected to inhibit cancer metastasis and invasion by tighten the cell junction and restoring tight junction in colon cancer cell line, HT-29.

Effect of ZNimesulide on the Differentiation and Survival of Endothelial Progenitor Cells

  • Oh, Ho-Kyun;Kim, Sun-Yong;Baek, Sang-Hong;Lim, Sung-Cil;Ahn, Hyun-Young;Shin, Jong-Chul;Hong, Sung-Hee;Hong, Yong-Kil;Joe, Young-Ae
    • Biomolecules & Therapeutics
    • /
    • v.12 no.4
    • /
    • pp.221-227
    • /
    • 2004
  • Nonsteroidal anti-inflammatory drugs (NSAIDs), particularly the highly selective cyclooxygenase (COX)-2 inhibitors have been shown to decrease the growth of tumor, in part, by inhibition of neovascularization. Recently, besides mature endothelial cells, endothelial progenitor cells (EPCs) have been shown to contribute neovascularization in angiogenic tissues. In this study, we addressed a question whether nimesulide, a selective COX-2 inhibitor, could affect differentiation of EPCs into adhesive endothelial cells in vitro. Total mononuclear cells were isolated from cord blood by Ficoll density gradient centrifugation, and then the cells were incubated with nimesulide or vehicle control for 7 days. The number of adherent and spindle-shaped cells decreased by nimesulide treatment in a concentration-dependent fashion at a concentration range of 5 - 200 ${\mu}M$. Moreover, the adherent cells double positive for DiI-ac-LDL uptake and lectin binding significantly decreased upon nimesulide treatment. There was no change of expression of CD31 between treatment and control groups, whereas slight reduction was detected upon treatment in expression of VE-cadherin, ICAM-1, vWF, ${\alpha}v$, and ${\alpha}5$. Nimesulide also reduced cell viability during first 3 days' culture and induced apoptosis in adherent EPCs, resulting in increased annexin-V-positive and propidium iodide-negative cells. Taken together, these results suggest that nimesulide could be applied for the inhibition of new vessel formation, in part, by inhibiting differentiation and survival of EPCs.

Glutamine Deprivation Inhibits Invasion of Human Prostate Carcinoma LnCap Cells through Inactivation of Matrix Metalloproteinases and Modulation of Tight Junctions (글루타민 결핍에 따른 Tight Junction 및 MMPs 활성 조절을 통한 전립선 암세포의 침윤 억제 현상)

  • Shin, Dong Yeok;Choi, Yung Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.8
    • /
    • pp.1167-1174
    • /
    • 2013
  • Cancer cells exhibit increased demand for glutamine-derived carbons to support anabolic processes. Indeed, the spectrum of glutamine-dependent tumors and the mechanisms through which glutamine supports cancer metabolism remain areas of active investigation. In the present study, we investigated the effects of glutamine deprivation on the correlation between tightening of tight junctions (TJs) and anti-invasive activity in human prostate carcinoma LnCap cells. Glutamine deprivation markedly inhibited cell motility and invasiveness in a time-dependent manner. The anti-invasive activity of glutamine deprivation was associated with an increased tightness of the TJ, which was demonstrated by an increase in transepithelial electrical resistance (TER). The activities of matrix metalloproteinase (MMP)-2 and MMP-9 were inhibited in a time-dependent fashion by glutamine deprivation, which was correlated with a decrease in expression of their mRNA and proteins and up-regulation of tissue inhibitors of metalloproteinases (TIMPs) expression. Furthermore, glutamine deprivation repressed the levels of the claudin family members, which are major components of TJs that play a key role in the control and selectivity of paracellular transport. Moreover, the levels of E-cadherin, a type I transmembrane glycoprotein, and snail, an epithelial to mesenchymal transition regulator and zinc finger transcription factor, were markedly modulated by glutamine deprivation. Taken together, these findings suggest that TJs and MMPs are critical targets of glutamine deprivation-induced anti-invasion in human prostate carcinoma LnCap cells.

Highly Expressed Integrin-α8 Induces Epithelial to Mesenchymal Transition-Like Features in Multiple Myeloma with Early Relapse

  • Ryu, Jiyeon;Koh, Youngil;Park, Hyejoo;Kim, Dae Yoon;Kim, Dong Chan;Byun, Ja Min;Lee, Hyun Jung;Yoon, Sung-Soo
    • Molecules and Cells
    • /
    • v.39 no.12
    • /
    • pp.898-908
    • /
    • 2016
  • Despite recent groundbreaking advances in multiple myeloma (MM) treatment, most MM patients ultimately experience relapse, and the relapse biology is not entirely understood. To define altered gene expression in MM relapse, gene expression profiles were examined and compared among 16 MM patients grouped by 12 months progression-free survival (PFS) after autologous stem cell transplantation. To maximize the difference between prognostic groups, patients at each end of the PFS spectrum (the four with the shortest PFS and four with the longest PFS) were chosen for additional analyses. We discovered that integrin-${\alpha}8$ (ITGA8) is highly expressed in MM patients with early relapse. The integrin family is well known to be involved in MM progression; however, the role of integrin-${\alpha}8$ is largely unknown. We functionally overexpressed integrin-${\alpha}8$ in MM cell lines, and surprisingly, stemness features including $HIF1{\alpha}$, VEGF, OCT4, and Nanog, as well as epithelial mesenchymal transition (EMT)-related phenotypes, including N-cadherin, Slug, Snail and CXCR4, were induced. These, consequently, enhanced migration and invasion abilities, which are crucial to MM pathogenesis. Moreover, the gain of integrin-${\alpha}8$ expression mediated drug resistance against melphalan and bortezomib, which are the main therapeutic agents in MM. The cBioPortal genomic database revealed that ITGA8 have significant tendency to co-occur with PDGFRA and PDGFRB and their mRNA expression were up-regulated in ITGA8 overexpressed MM cells. In summary, integrin-${\alpha}8$, which was up-regulated in MM of early relapse, mediates EMT-like phenotype, enhancing migration and invasion; therefore, it could serve as a potential marker of MM relapse and be a new therapeutic target.