• Title/Summary/Keyword: M-H hysterisis

Search Result 6, Processing Time 0.018 seconds

Hysterisis Investigation of Magnetorheological Fluid Using Preisach Model (Preisach 모델을 이용한 MR 유체의 히스테리시스 특성 고찰)

  • Han, Y.M.;Lim, K.H.;Choi, S.B.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.350-355
    • /
    • 2005
  • This paper presents a new approach for hysteresis modeling of a magnetorheological (MR) fluid. The field-dependent hysteresis of MR fluid is investigated using the Preisach model. The commercial MR Product (MRF-132LD, Lord Corporation) is employed. Its field-dependent shear stress is then obtained using a rheometer (MCR 300, Physica). In order to show the applicability of the Preisach model to the MR fluid, two significant Properties; the minor loop property and the wiping-out property are experimentally examined. Subsequently, the Preisach model for the MR fluid is identified using experimental first order descending (FOD) curves in discrete manner. The effectiveness of the identified hysteresis model is verified in the time domain by comparing the predicted field-dependent shear stress with the measured one. In addition, the hysteresis model proposed in this work is compared to Bingham model.

  • PDF

Pspice Model of a ZnO Varistor for Impulse Current (임펄스 전류에 대한 ZnO 바리스터의 Pspice 모델)

  • Lee, B.H.;Kong, Y.H.;Lee, D.M.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2161-2163
    • /
    • 1999
  • Generally, ZnO varistors have dynamic characteristics that the cut-off voltage increases as the time to crest of the varistor current decreases. Dynamic characteristics of ZnO varistor are the most important factor in region of the steep front discharge current particularly. Also, V-I characteristics of ZnO varistor have hysterisis loop in time domain and frequency dependency. This paper deals with ZnO varistor numerical equation and modeling method which takes the behavior of varying clamping voltage into consideration during the time to crest, in range of $1{\mu}m{\sim}50{\mu}m$, of impulse current applied to a ZnO varistor. The simulated results by the proposed model are compared with experimental results for each of the impulse current.

  • PDF

Wind-Tunnel Experiment for the Steady and Unsteady Torques of a Control Panel (제어판의 정상 및 비정상 토크에 관한 풍동시험)

  • M.S. Suh;S. Kauh;S.H. Kang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.4
    • /
    • pp.98-103
    • /
    • 1992
  • The dynamic and static torque characteristics of a three dimensional control panel installed behind a guide panel were investigated in a wind tunnel. The panel was tested for various wind speeds, angles of attack and positions of the panel. The effects of the rotational speed and the amplitude of the sinusoidal motion were also studied. The increasing rate of torque coefficients with the angular position of the panel is small when the panel remains in the wake region, but is linear when it reaches the external stream. In case of a sinusoidal motion of the pannel, a hysterisis appears in the dynamic torque. The hysterisis becomes strong as the wind speed and the angular speed of the panel increase. The unsteady torque is considered quasi-steady when the angular speed is less than 5.5rad/s, i.e. the reduced frequency is less than 0.035.

  • PDF

Charicteristics of Stationary and Transient Ground Impedance of Large-Scale Grounding Piles (임펄스 전류에 대한 대규모 접지시스템의 정상상태 및 과도상태의 접지임피던스 특성)

  • Lee, B.H.;Lee, S.C.;Park, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2296-2298
    • /
    • 1999
  • The stationary ground resistance and the transient ground impedance of grounding system are very important parameters in the field of lightning and surge protection. But, it is very difficult to obtain correct values of them in large-scale grounding system. In this paper, the stationary and transient ground impedances of a large-scale grounding system have been measured and analyzed under impulse currents. In order to obtain correct values of them, we have described Z-v(impedance vs ground potential rise) distributions and Z-t waveforms. The transient ground impedance of 36 [m] long three-parallel grounding piles have showed the inductive aspects and the hysterisis region under impulse currents.

  • PDF

A Study on the Effect of Low-loss Additives on the Property of NiCuZn Ferrite (저손실 첨가제가 NiCuZn Ferrite 특성에 미치는 영향 연구)

  • Kim, Hwan-Chul;Koh, Jae-Gui
    • Korean Journal of Materials Research
    • /
    • v.13 no.8
    • /
    • pp.531-536
    • /
    • 2003
  • The electromagnetic properties and microstructures of the ferrites based on ($Ni_{0.2}$ $Cu_{0.2}$ $Zn_{0.6}$)$_{1.085}$($Fe_2$$O_3$)$_{0.915}$ were investigated by changing the amount of additive SnO$_2$and CaO and the sintering temperatures. Addition of $SnO_2$caused pores in the specimen. There was no variation of grain size by changing the amount of additives. Total loss was reduced when ($Ni_{0.2} $Cu_{0.2}$ $Zn_{ 0.6}$)$_{1.085}$ ($Fe_2$$O_3$)$_{0.915}$ composition was sintered at $1150^{\circ}C$ rather than $1300^{\circ}C$. Addition of CaO was useful to reduce the total loss because it increased the sintering density. The lowest total loss was obtained when 0.06 wt% $SnO_2$and 0.4 wt% CaO were added at the same time.

Piezoelectric/magnetic Properties and Magnetoelectric Effects in (1-x) [0.5PZT-0.25PNN-0.25PZN] - x [Ni0.9Zn0.1Fe2O4] Particulate Ceramic Composites ((1-x) [0.5PZT-0.25PNN-0.25PZN]- x [Ni0.9Zn0.1Fe2O4] 세라믹스의 압전/자성 성질 및 자기전기적 효과)

  • Park, Young-Kwon;Son, Se-Mo;Ryu, Ji-Goo;Chung, Su-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.11
    • /
    • pp.869-874
    • /
    • 2010
  • Magnetoelectric composites with compositions (1-x)[0.5PZT-0.25PNN-0.25PZN](ferroelectric) - x[$(Ni_{0.9}Zn_{0.1})Fe_2O_4$](ferrite) in which x varies as 0, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0 were prepared by conventional ceramic process. The presence of two phases (ferroelectric phase with large grain and ferrite phase with small grain) in the particulate ceramic composites was confirmed by XRD, SEM and EDX. The ferroelectric and magnetic properties of the composites were studied by measuring the P-E and M-H hysterisis loop on the composite composition (x=0, 0.1, 0.2, 1), they were strongly affects of the phase content in composite. The magnetoelectric votage was measured as a function of DC magnetic field and the maximum magnetoelectric voltage coefficient of 14 mV/cm Oe was observed in x=0.2(80 mol% ferroelectric and 20 mol% ferrite phase).