• Title/Summary/Keyword: Lysosomal dysfunction

Search Result 24, Processing Time 0.016 seconds

Mucopolysaccharidoses in Taiwan

  • Lin, Hsiang-Yu;Chuang, Chih-Kuang;Lin, Shuan-Pei
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • v.4 no.1
    • /
    • pp.14-20
    • /
    • 2018
  • Mucopolysaccharidoses (MPSs) are a group of rare inherited metabolic disorders caused by specific lysosomal enzyme deficiencies leading to the sequential degradation of glycosaminoglycans, causing substrate accumulation in various cells and tissues and progressive multiple organ dysfunction. The rare disease medical care team at Mackay Memorial Hospital in Taiwan has been dedicated to the study of MPSs for more than 20 years. Since 1999, more than 50 academic papers focusing on MPSs have been published in international medical journals. Topics of research include the following items regarding MPSs: incidence, natural history, clinical manifestations, gene mutation characteristics, cardiac function, bone mineral density, sleep studies, pulmonary function tests, hearing assessments, percutaneous endoscopic gastrostomy, anesthetic experience, imaging analysis, special biochemical tests, laboratory diagnostics, global expert consensus conferences, prenatal diagnosis, new drug clinical trials, newborn screening, and treatment outcomes. Of these published academic research papers, more than half were cross-domain, cross-industry, and international studies with results in cooperation with experts from European, American and other Asian countries. A cross-specialty collaboration platform was established based on high-risk population screening criteria with the acronym "BECARE" (Bone and joints, Eyes, Cardiac and central nervous system, Abdomen and appearance, Respiratory system, and Ear, nose, and throat involvement). Through this platform, orthopedic surgeons, rheumatologists, ophthalmologists, cardiologists, rehabilitation physicians, gastroenterologists, otorhinolaryngologists, and medical geneticists have been educated with regards to awareness of suspected cases of MPSs patients to allow for a further confirmative diagnosis of MPSs. Because of the progressive nature of the disease, an early diagnosis and early multidisciplinary therapeutic interventions including surgery, rehabilitation programs, symptom-based treatments, hematopoietic stem cell transplantation, and enzyme replacement therapy, are very important.

DENTAL MANAGEMENT OF PATIENT WITH HUNTER SYNDROME (MUCOPOLYSACCHARIDOSIS TYPE II) : A CASE REPORT (Hunter 증후군 환아의 치과적 관리: 증례보고)

  • Lee, Min-Jeong;Kim, Jae-Gon;Yang, Yeon-Mi;Baik, Byeong-Ju;Song, Hee-Jeong
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.39 no.4
    • /
    • pp.412-417
    • /
    • 2012
  • Mucopolysaccharidosis (MPS) is a disorder which is caused by the defect of the lysosomal enzyme that is essentially needed for resolution of glycosaminoglycans (GAGs). Metabolite of GAGs will accumulate in the lysosome of cells and will result in the dysfunction of cells, tissues, and organs. Eventually, patients will manifest both mental retardation and physical disorders. In worst cases, mucopolysaccharidosis can cause premature death. The current clinical types have been classified as MPS from type I to type IX according to the defect of certain enzyme. The dental complications have been reported as delay of eruption, enamel hypoplasia, microdontia, malocclusion, condylar defects, gingival hyperplasia and dentigerous cystlike follicle. This clinical report presents the case of a boy with MPS type II, Hunter Syndrome which has various dental complications.

Korean Red ginseng prevents endothelial senescence by downregulating the HO-1/NF-κB/miRNA-155-5p/eNOS pathway

  • Kim, Tae-Hoon;Kim, Ji-Yoon;Bae, Jieun;Kim, Young-Mi;Won, Moo-Ho;Ha, Kwon-Soo;Kwon, Young-Guen;Kim, Young-Myeong
    • Journal of Ginseng Research
    • /
    • v.45 no.2
    • /
    • pp.344-353
    • /
    • 2021
  • Background: Korean Red ginseng extract (KRGE) has beneficial effects on the cardiovascular system by improving endothelial cell function. However, its pharmacological effect on endothelial cell senescence has not been clearly elucidated. Therefore, we examined the effect and molecular mechanism of KRGE on the senescence of human umbilical vein endothelial cells (HUVECs). Methods: HUVECs were grown in normal or KRGE-supplemented medium. Furthermore, they were transfected with heme oxygenase-1 (HO-1) gene or treated with its inhibitor, a NF-κB inhibitor, and a miR-155-5p mimic or inhibitor. Senescence-associated characteristics of endothelial cells were determined by biochemical and immunohistochemical analyses. Results: Treatment of HUVECs with KRGE resulted in delayed onset and progression of senescence-associated characteristics, such as increased lysosomal acidic β-galactosidase and decreased telomerase activity, angiogenic dysfunction, and abnormal cell morphology. KRGE preserved the levels of anti-senescent factors, such as eNOS-derived NO, MnSOD, and cyclins D and A: however, it decreased the levels of senescence-promoting factors, such as ROS, activated NF-κB, endothelial cell inflammation, and p21 expression. The beneficial effects of KRGE were due to the induction of HO-1 and the inhibition of NF-κB-dependent biogenesis of miR-155-5p that led to the downregulation of eNOS. Moreover, treatment with inhibitors of HO-1, NF-κB, and miR-155-5p abolished the anti-senescence effects of KRGE. Conclusion: KRGE delayed or prevented HUVEC senescence through a signaling cascade involving the induction of HO-1, the inhibition of NF-κB-dependent miR-155-5p biogenesis, and the maintenance of the eNOS/NO axis activity, suggesting that it may protect against vascular diseases associated with endothelial senescence.

A Case of Hunter Syndrome Diagnosed at 7 Months of Age by Exome Sequencing (엑솜시퀀싱을 통해 생후 7개월에 진단된 헌터증후군)

  • Song, Ari;Lee, Jin Sung;Im, Minji;Park, Hyung Doo;Cho, Sung Yoon;Jin, Dong-Kyu
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.18 no.2
    • /
    • pp.62-67
    • /
    • 2018
  • Hunter syndrome, also known as mucopolysaccharidosis Type II (MPS II), is one of the lysosomal storage diseases caused by a lack of the enzyme iduronate 2-sulfatase (I2S). Lack of the I2S enzyme activity leads to accumulation of the glycosaminoglycans (GAG), causing dysfunction of multiple organs and systems. MPS II is an X-linked recessive disease due to mutation of IDS gene located on long arm of the X chromosome (Xq28). To date, more than 350 mutations of IDS gene have been identified in Hunter syndrome. Phenotypes of MPS II are classified as either severe or attenuated depending on the degree of cognitive impairment. Because the phenotype of MPS II is related to the type of mutation, identifying mutations is useful in predicting prognosis. We recently had a case of MPS II diagnosed by exome sequencing in a 7 month old boy with infantile spasm uncontrolled by AED. He was diagnosed with hearing loss at 2 months of age, and he took vigabatrin and prednisolone to control infantile spasms diagnosed at 3 months of age. At 6 months of age, whole exome sequencing was performed to evaluate the infantile spasm and hearing loss in this patient, and the mutation c.851C>T (p.Pro284Leu) inherited from hemizygous mother was revealed. The results of urine Cetylpyridinium Chloride (CPC) precipitation test, which were negative until 8 months of age, were positive from 9 months of age. We report a case of MPS II diagnosed by exome sequencing and treated through enzyme replacement therapy from 9 months after birth.

  • PDF