• 제목/요약/키워드: Lysine methylation

검색결과 33건 처리시간 0.024초

히스톤 메틸화와 유전자 전사 (Histone methylation and transcription)

  • 김애리
    • 생명과학회지
    • /
    • 제17권4호
    • /
    • pp.593-598
    • /
    • 2007
  • Amino acids of histone tail are covalently modified in eukaryotic cells. Lysine residues in histone H3 and H4 are methylated at three levels; mono-, di- or trimethylation. Methylation in histones is related with transcription of the genes in distinct pattern depending on lysine residues and methylated levels. Relation between transcription and methylation has been relatively well understood at three lysines H3K4, H3K9 and H3K36. H3K4 is methylated in active or potentially active chromatin and its methylation associates with active transcription. H3K9 is generally methylated in heterochromatin or repressed gene, but trimethylation of this lysine occur in actively transcribed genes also. Methylation at H3K36 generally correlates with active chromatin/transcription, but the correlation of its dimethylation with transcription is controversial. All together methylation patterns of individual lysine residues in histone relate with activation or repression of transcription and may provide distinctive roles in transcriptional regulation of the eukaryotic genes.

히스톤 라이신 메틸화 (Histone Lysine Methylation)

  • 곽상준
    • 생명과학회지
    • /
    • 제17권3호통권83호
    • /
    • pp.444-453
    • /
    • 2007
  • 유핵세포의 게놈(genome)은 단백-DNA복합체인 염색질(chromatin)의 형태로 존재하는데, 생명현상을 유지하기 위해서는 생명체 또는 세포가 처한 상황에 맞게 염색질의 구조를 변화시키는 역동적인 조절기전이 필요하다. 염색질을 구성하는 기본단위는 히스톤 8량체 (histone octamer)를 포함하는 뉴클레오좀(nucleosome)이다. 히스톤 단백에는 여러 종류의 공유결합성 수식이 일어나는데, 그 중 하나가 라이신 잔기(lysine residue)에 일어나는 메틸화이다. 최근 수년간의 연구로 여러 개의 히스톤 라이신 메틸화효소(histone lysine methyltransferase, HKMT), 이에 결합하는 염색질단백 및 메틸화와 관련된 후생유전학적 현상이 밝혀졌으며, 특히 정밀한 연구방법을 동원한 다방면의 실험을 통하여 비록 자세한 기전과 전체적인 윤곽의 규명은 미흡하더라도 라이신 메틸화가 후생유전학적 변화를 초래하는 일부 과정이 규명 되었다. 또한 여러 종류의 라이신 탈메틸화효소가 최근에 발견됨에 따라, 아세틸화, 인산화등 다른 공유결합성 수식보다는 상대 적으로 안정되더라도, 히스톤 메 틸화로 유발되는 후생유전학적 변화가 불가역성이 아님을 알게 되었다.

Adipogenesis에서 히스톤 H3 lysine methylation (Histone H3 Lysine Methylation in Adipogenesis)

  • 장영훈
    • 생명과학회지
    • /
    • 제30권8호
    • /
    • pp.713-721
    • /
    • 2020
  • Adipogenesis의 연구는 인간의 지방생물학의 기초적인 분자기전을 이해하고, 비만, 당뇨 및 대사성 증후군의 발병기전을 밝히는데 필요하다. Adipogenesis의 많은 연구가 adipocytes 특이적인 핵심 전사인자인 PPARγ와 C/EBPα를 중심으로 하는 유전자 발현조절 및 세포 내 신호전달에 초점이 맞추어 활발하게 연구가 진행되었다. 그러나, 에피지놈 변형효소나 히스톤 돌연변이에 의한 에피지놈 관점에서 adipogenesis 연구는 미흡한 실정이다. 포유동물에서 히스톤 methylation은 유전자 발현에 대한 주요 후성유전적(epigenome) 변형 중 하나이며, 특히 히스톤 H3 lysine methylation은 다양한 조직 및 기관 발생과정과 세포 분화에 매우 중요한 히스톤 변형이다. 세포 특이적 enhancer는 adipogenesis에서 active enhancer 표지자인 H3K27ac와 함께 H3K4me1로 변형된다. MLL4는 Pparg 및 Cebpa 유전자 ehancers에서 중요한 adipogenic H3K4 mono-methyltransferase이다. 따라서 MLL4는 adipogenesis에 중요한 에피지놈 변형효소라고 할 수 있다. 유전자 발현 억제를 유발하는 대표적인 히스톤 변형인 H3K27me3은 Polycomb repressive complex 2의 효소활성 subunit인 Ezh2에 의해 매개된다. Wnt 유전자에서 Ezh2에 의한 H3K27me3 히스톤 methylation 변형은 adipogenesis를 증가시키는데, 이는 WNT 신호 전달이 adipogenesis의 억제 조절자로 알려져 있기 때문이다. 본 논문은 유전자 발현을 근본적으로 조절하는 히스톤 H3 methylation에 의한 후성 유전학적인 조절이 어떻게 adipogenesis를 조절하는지에 대해 요약한다.

Effect of Enzymatic Methylation of Proteins on Their Isoelectric Points

  • Park, Kwang-Sook;Frost, Blaise F.;Lee, Hyang-Woo;Kim, Sang-Duk;Paik, Woon-Ki
    • Archives of Pharmacal Research
    • /
    • 제12권2호
    • /
    • pp.79-87
    • /
    • 1989
  • Enzymatic methylation of arginine and lysine residues of several cytochrome c and lysine residue of calmodulin always resulted in lowering of their respective isoelectric points (pI). Employing cytochromes c derived from various sources, we examined a possible relationship between the degree of amino acid sequence degeneracy and the magnitude of change in the pI values by enzymatic methylation, and found that there was no correlation between these two parameters. By constructing space-filling models of oligopeptide fragments adjacent to the potential methylation sites, we have noted that not all the methylatable residues are able to form hydrogen bonds prior to the methylation. Two preparations of yeast apocytochrome c, one chemically prepared by removing heme from holocytochrome c and the other by translating yeast iso-1-cytochrome c mRNA in vitro, exhibited slightly higher Stokes radii than the homologous holocytochrome c, indicating relatively 'relaxed or open' conformation of the protein. However, when the in vitro synthesized methylated apocytochrome c was compared with the unmethylated counter-part, the Stokes radius of the latter was found to be larger.

  • PDF

Methylation Changes of Lysine 9 of Histone H3 during Preimplantation Mouse Development

  • Yeo, Seungeun;Lee, Kyung-Kwang;Han, Yong-Mahn;Kang, Yong-Kook
    • Molecules and Cells
    • /
    • 제20권3호
    • /
    • pp.423-428
    • /
    • 2005
  • Immediately after fertilization, a chromatin remodeling process in the oocyte cytoplasm extracts protamine molecules from the sperm-derived DNA and loads histones onto it. We examined how the histone H3-lysine 9 methylation system is established on the remodeled sperm chromatin in mice. We found that the paternal pronucleus was not stained for dimethylated H3-K9 (H3-$m_2K9$) during pronucleus development, while the maternal genome stained intensively. Such H3-$m_2K9$ asymmetry between the parental pronuclei was independent of $HP1{\beta}$ localization and, much like DNA methylation, was preserved to the two-cell stage when the nucleus appeared to be compartmentalized for H3-$m_2K9$. A conspicuous increase in H3-$m_2K9$ level was observed at the four-cell stage, and then the level was maintained without a visible change up to the blastocyst stage. The behavior of H3-$m_2K9$ was very similar, but not identical, to that of 5-methylcytosine during preimplantation development, suggesting that there is some connection between methylation of histone and of DNA in early mouse development.

Endogenous Proteinaceous Inhibitor for Protein Methylation Reactions

  • Paik, Woon-Ki;Lee, Hyang-Woo;Kim, Sangduk
    • Archives of Pharmacal Research
    • /
    • 제10권3호
    • /
    • pp.193-196
    • /
    • 1987
  • Protein methylation occurs ubiquitously in nature and involves N-methylation of lysine, arginine, histidine, alanine, proline and glutamine, O-methylesterfication o dicarboxylic acids, and S-methylation of cysteine and methionine. In nature, methylated amino acids accur in highly specialized proteins such as histones, flagella proteins, myosin, actin, ribosomal proteins. hn RNA-bound protein, HMG-1 and HMG-2 protein, opsin, EF-Tu, EF-$1\alpha$, porcine heart citrate synthase, calmodulin, ferredoxin, $1\alpha$-amylase, heat shock protein, scleroderma antigen, nucleolar protein C23 and IF-3l.

  • PDF

Regulation of HIF-1α stability by lysine methylation

  • Baek, Sung Hee;Kim, Keun Il
    • BMB Reports
    • /
    • 제49권5호
    • /
    • pp.245-246
    • /
    • 2016
  • The level and activity of critical regulatory proteins in cells are tightly controlled by several tiers of post-translational modifications. HIF-1α is maintained at low levels under normoxia conditions by the collaboration between PHD proteins and the VHL-containing E3 ubiquitin ligase complex. We recently identified a new physiologically relevant mechanism that regulates HIF-1α stability in the nucleus in response to cellular oxygen levels. This mechanism is based on the collaboration between the SET7/9 methyltransferase and the LSD1 demethylase. SET7/9 adds a methyl group to HIF-1α, which triggers degradation of the protein by the ubiquitin-proteasome system, whereas LSD1 removes the methyl group, leading to stabilization of HIF-1α under hypoxia conditions. In cells from knock-in mice with a mutation preventing HIF-1α methylation (Hif1αKA/KA), HIF-1α levels were increased in both normoxic and hypoxic conditions. Hif1αKA/KA knock-in mice displayed increased hematological parameters, such as red blood cell count and hemoglobin concentration. They also displayed pathological phenotypes; retinal and tumor-associated angiogenesis as well as tumor growth were increased in Hif1αKA/KA knock-in mice. Certain human cancer cells exhibit mutations that cause defects in HIF-1α methylation. In summary, this newly identified methylation-based regulation of HIF-1α stability constitutes another layer of regulation that is independent of previously identified mechanisms.

Cytochrome C methylation: Current Knowledge of its Biological Significance

  • Park, Kwang-Sook;Frost, Blaise F.;Lee, Hyang-Woo;Kim, Sang-Duk;Paik, Woon-Ki
    • Archives of Pharmacal Research
    • /
    • 제11권1호
    • /
    • pp.7-13
    • /
    • 1988
  • The yeast cytochrome c gene has been recloned, and the resulting cytochrome c mRNA has been translated in rabbit reticulocyte lysate translation system. The newly synthesized apocytochrome c could be methylated by exogenously added cytochrome c-lysine N-methyltransferase. Enzymatic methylation of in vitro synthesized apocytochrome c was found to facilitate specifically its import into mitochondria of yeast, but not of rat liver.

  • PDF

Influence of the Structural Characteristics of Amino Acids on Direct Methylation Behaviors by TMAH in Pyrolysis

  • Choi, Sung-Seen;Ko, Ji-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권11호
    • /
    • pp.2542-2548
    • /
    • 2009
  • Direct methylation behaviors of 20 amino acids with tetramethylammonium hydroxide (TMAH) were studied under diluted conditions with silica. Amino acid concentration was controlled by dilution with silica ($SiO_2$) and the molar ratios of amino acid/silica were 0.20, 0.50, and 2.0. The molar ratios of amino acid/TMAH (0.51 - 4.64) also varied. It was found that arginine, asparagine, aspartic acid, cysteine, glutamic acid, and glutamine did not generate any directly methylated pyrolysis products, whereas alanine, glycine, isoleucine, leucine, methionine, phenylanaline, valine, and proline generated all the directly methylated pyrolysis products. Tri- and tetra methylated products of lysine consisted of two types. Histidine and threonine hardly generated the partly methylated products. Mono- and dimethylated products of serine, tryptophan, and tyrosine were not observed. Relative intensities of the methylated products varied with the amino acid concentration, TMAH concentration, and pyrolysis temperature. Direct methylation behaviors of amino acids were explained by the structural characteristics of amino acids.

Inactivation of the genes involved in histone H3-lysine 4 methylation abates the biosynthesis of pigment azaphilone in Monascus purpureus

  • Balakrishnan, Bijinu;Lim, Yoon Ji;Suh, Jae-Won;Kwon, Hyung-Jin
    • Journal of Applied Biological Chemistry
    • /
    • 제62권2호
    • /
    • pp.157-165
    • /
    • 2019
  • Di- and tri-methylation of lysine 4 on histone H3 (H3K4me2 and H3K4me3, respectively) are epigenetic markers of active genes. Complex associated with Set1 (COMPASS) mediates these H3K4 methylations. The involvement of COMPASS activity in secondary metabolite (SM) biosynthesis was first demonstrated with an Aspergillus nidulans cclA knockout mutant. The cclA knockout induced the transcription of two cryptic SM biosynthetic gene clusters, leading to the production of the cognate SM. Monascus spp. are filamentous fungi that have been used for food fermentation in eastern Asia, and the pigment Monascus azaphione (MAz) is their main SM. Monascus highly produces MAz, implying that the cognate biosynthetic genes are highly active in transcription. In the present study, we examined how COMPASS activity modulates MAz biosynthesis by inactivating Monascus purpureus cclA (Mp-cclA) and swd1 (Mp-swd1). For both ${\Delta}Mp-cclA$ and ${\Delta}Mp-swd1$, a reduction in MAz production, accompanied by an abated cell growth, was observed. Suppression of MAz production was more effective in an agar culture than in the submerged liquid culture. The fidelity of the ${\Delta}Mp-swd1$ phenotypes was verified by restoring the WT-like phenotypes in a reversion recombinant mutant, namely, trpCp: Mp-swd1, that was generated from the ${\Delta}Mp-swd1$ mutant. Real-time quantitative Polymerase chain reaction analysis indicated that the transcription of MAz biosynthetic genes was repressed in the ${\Delta}Mp-swd1$ mutant. This study demonstrated that MAz biosynthesis is under the control of COMPASS activity and that the extent of this regulation is dependent on growth conditions.