• Title/Summary/Keyword: Lymphatic filariasis

Search Result 13, Processing Time 0.017 seconds

Analysis of Diethylcarbamazine and Diethylcarbamazine-N-oxide by Gas Chromatography

  • Lee, Suk-Hyang;M.S;Pharm.D
    • Archives of Pharmacal Research
    • /
    • v.19 no.6
    • /
    • pp.475-479
    • /
    • 1996
  • Diethylcarbamazine (DEC, 1-diethylcarbamyl-4-methylpiperazine) is an antiparasitic piperazine derivative used in the treatment of lymphatic filariasis caused by Wuchereria bancrofti, Brugia malayi or grugia timori. DEC-N-oxide is a major metabolite in humans and has antifilarial activity. In carrying out pharmacokinetic studies, gas chromatographic analysis of DEC in plasma can be complicated by the presence of the metabolite, since the thermally unstable DEC-N-oxide is converted back to a material which coelutes with DEC under the conditions of the analysis. We now report a method to separate DEC-N-oxide from DEC in plasma using solid phase extraction with subsequent gas chromatographic analysis using a nitrogen specific detector. One-diethylcarbamyl-4-ethylpiperazine (E-DEC) was the internal standard. The standard curve of DEC was linear in the range of 10 to 200 ng/ml as described by Y=0.0350+0.0128X, $R^2=0.999$. The limit of quantitation was 4 ng/mL. Reproducibility at 10, 100 and 200 ng/mL concentration points of the standard curve gave coefficient variations of 6.1%, 7.8% and 1.6%, respectively. The recovery following solid phase extraction was 99.3% for DEC and 94.8% for the internal standard. This sensitive and specific analytical method is suitable for pharmacokinetic studies of DEC.

  • PDF

Prevention and Control Strategies for Parasitic Infections in the Korea Centers for Disease Control and Prevention

  • Bahk, Young Yil;Shin, Eun-Hee;Cho, Shin-Hyeong;Ju, Jung-Won;Chai, Jong-Yil;Kim, Tong-Soo
    • Parasites, Hosts and Diseases
    • /
    • v.56 no.5
    • /
    • pp.401-408
    • /
    • 2018
  • Korea is successfully controlled intestinal parasitic infections owing to economic development and high health consciousness. The Division of Vectors and Parasitic Diseases (formerly the Division of Malaria and Parasitology) is in the Center for Laboratory Control of Infectious Diseases of the Korea Centers for Disease Control and Prevention. It has been the governmental agency responsible for controlling and leading scientific research on parasitic diseases. The Division of Vectors and Parasitic Diseases has conducted and funded basic research and disseminated the research results to various medical fields, ultimately promoting public health in Korea. Among the noteworthy achievements of this division are the national surveillance of healthcare-associated parasitic infections, prevention and control for parasitic infections, and the elimination of lymphatic filariasis from Korea. On a broader scale, the division's research programs and academic supports were influential in preventing and treating infectious parasitic diseases through public policies and laws. In this review, we summarize the past and present role of the Division of Vectors and Parasitic Diseases in preventing and treating infectious parasitic diseases in Korea.

Albendazole and Mebendazole as Anti-Parasitic and Anti-Cancer Agents: an Update

  • Chai, Jong-Yil;Jung, Bong-Kwang;Hong, Sung-Jong
    • Parasites, Hosts and Diseases
    • /
    • v.59 no.3
    • /
    • pp.189-225
    • /
    • 2021
  • The use of albendazole and mebendazole, i.e., benzimidazole broad-spectrum anthelmintics, in treatment of parasitic infections, as well as cancers, is briefly reviewed. These drugs are known to block the microtubule systems of parasites and mammalian cells leading to inhibition of glucose uptake and transport and finally cell death. Eventually they exhibit ovicidal, larvicidal, and vermicidal effects on parasites, and tumoricidal effects on hosts. Albendazole and mebendazole are most frequently prescribed for treatment of intestinal nematode infections (ascariasis, hookworm infections, trichuriasis, strongyloidiasis, and enterobiasis) and can also be used for intestinal tapeworm infections (taeniases and hymenolepiasis). However, these drugs also exhibit considerable therapeutic effects against tissue nematode/cestode infections (visceral, ocular, neural, and cutaneous larva migrans, anisakiasis, trichinosis, hepatic and intestinal capillariasis, angiostrongyliasis, gnathostomiasis, gongylonemiasis, thelaziasis, dracunculiasis, cerebral and subcutaneous cysticercosis, and echinococcosis). Albendazole is also used for treatment of filarial infections (lymphatic filariasis, onchocerciasis, loiasis, mansonellosis, and dirofilariasis) alone or in combination with other drugs, such as ivermectin or diethylcarbamazine. Albendazole was tried even for treatment of trematode (fascioliasis, clonorchiasis, opisthorchiasis, and intestinal fluke infections) and protozoan infections (giardiasis, vaginal trichomoniasis, cryptosporidiosis, and microsporidiosis). These drugs are generally safe with few side effects; however, when they are used for prolonged time (>14-28 days) or even only 1 time, liver toxicity and other side reactions may occur. In hookworms, Trichuris trichiura, possibly Ascaris lumbricoides, Wuchereria bancrofti, and Giardia sp., there are emerging issues of drug resistance. It is of particular note that albendazole and mebendazole have been repositioned as promising anti-cancer drugs. These drugs have been shown to be active in vitro and in vivo (animals) against liver, lung, ovary, prostate, colorectal, breast, head and neck cancers, and melanoma. Two clinical reports for albendazole and 2 case reports for mebendazole have revealed promising effects of these drugs in human patients having variable types of cancers. However, because of the toxicity of albendazole, for example, neutropenia due to myelosuppression, if high doses are used for a prolonged time, mebendazole is currently more popularly used than albendazole in anti-cancer clinical trials.