• 제목/요약/키워드: Lycopersicon esculentum

검색결과 176건 처리시간 0.056초

Distribution and Phytotoxicity of Mercury in Tomato Seedlings Exposed to Mercury

  • Cho, Un-Haing
    • The Korean Journal of Ecology
    • /
    • 제22권2호
    • /
    • pp.89-94
    • /
    • 1999
  • Thirty-day-old seedlings of tomato (Lycopersicon esculentum) were treated with different concentrations of HgCl$_2$(0. 10 and 50 $\mu$M) for up to 20 days. and the detailed distribution of Hg absorbed and its toxicity in different plant parts (roots, stems and leaves) were investigated. The accumulation of Hg in plants increased with external Hg concentrations. and Hg is strongly retained by roots. Further. Hg content in leaves was various. showing more accumulation in older leaves. Seedlings exposed to toxic levels of Hg showed not only the reduction of dry weight and length of both shoot and root. and chlorophyll levels in leaves but also the enhancement of malondialdehyde (a lipid peroxidation product) formation in all plant parts investigated. These results suggest that physiological impairment of a plant exposed to Hg may be achieved by internal distribution of Hg absorbed and Hg-induced oxidative stress in different plant parts.

  • PDF

Cadmium-Induced Phytotoxicity in Tomato Seedlings Due to the Accumulation of H2O2 That Results from the Reduced Activities of H2O2 Detoxifying Enzymes

  • Cho, Un-Haing
    • The Korean Journal of Ecology
    • /
    • 제27권2호
    • /
    • pp.107-114
    • /
    • 2004
  • Tomato (Lycopersicon esculentum) seedlings exposed to various concentrations of $CdC1_2$ (0∼100 $\mu$M) in the nutrient solution for up to 9 days were analyzed with the seedling growth, $H_2O_2$ production, glutathione levels and activity changes of enzymes related to $H_2O_2$ removal. The growth of seedlings was inhibited with over 50 $\mu$M Cd, whereas the levels of $H_2O_2$ and glutathione were enhanced with Cd exposure level and time. Meanwhile, Cd exposure increased the activities of catalase (CAT) and glutathione reductase (GR) but decreased the activities of dehydroascorbate acid reductase (DHAR) and ascorbate peroxidase (APX) in both leaves and roots. These results suggest that the altered activities of antioxidant enzymes particularly involved in the $H_2O_2$ removal and the subsequent $H_2O$$_2$ accumulation could induce the Cd-induced phytotoxicity.

Effects of arbuscular mycorrhizal fungi on enhancing growth, fruit quality, and functional substances in tomato fruits (Lycopersicon esculentum Mill.)

  • Thanapat Suebrasri;Wasan Seemakram;Chanon Lapjit;Wiyada Mongkolthanaruk;Sophon Boonlue
    • Journal of Plant Biotechnology
    • /
    • 제50권
    • /
    • pp.239-247
    • /
    • 2023
  • This study aimed to investigate the efficiency of arbuscular mycorrhizal fungi (AMF) in enhancing plant performance and bioactive compound concentrations in tomatoes (Lycopersicon esculentum Mill.). This factorial pot experiment included nine replications over 120 days of cultivation. Three AMF species (Rhizophagus prolifer, Claroideoglomus etunicatum, and Acaulospora mellea) were utilized as inoculum, while non-mycorrhizal controls with or without synthetic NPK fertilizer were compared. Interestingly, C. etunicatum KS-02 inoculations effectuated the best fruit growth and weight, which were statistically higher than those of the control without AMF. However, only fruit fresh weight was higher in plants inoculated with C. etunicatum KS-02 than those treated with the synthetic NPK fertilizer. In addition, C. etunicatum KS-02 inoculations induced a ≥ 11% increase in DDPH (1,1-diphenyl-2-picrylhydrazyl) activity, lycopene content, and carotenoid content compared to the control. This study is the first to report Claroideoglomus species' effectiveness in promoting growth, fruit yield, and bioactive compound production in L. esculentum Mill. These findings substantiate the significant potential of C. etunicatum KS-02 for tomato cultivation without the adverse effects of excessive synthetic fertilizer use.

Glyphosate 독성(毒性): I. Glyphosate 처리(處理)가 토마토의 Shikimic Acid의 축적(蓄積)과 엽록소(葉綠素)의 분해(分解)에 미치는 영향(影響) (Glyphosate Toxicity: I. Long Term Analysis of Shikimic Acid Accumulation and Chlorophyll Degradation in Tomato Plant)

  • 김태완;니콜라스 암라인
    • 한국잡초학회지
    • /
    • 제15권2호
    • /
    • pp.141-147
    • /
    • 1995
  • Glyphosate (N-[phosphonomethyl)glycine)에 의한 식물체(植物體)의 피해양상(被害樣相)을 알아보기 위하여 토마토(Lycopersicon esculentum Mil)를 대상으로 하여 동화부위(同化部位)에 부분처리(部分處理)하거나 전(全) 식물체(植物體)에 분무처리(噴霧處理)하였다. Glyphosate는 처리 24시간(時間)이내에 shikimic acid의 급속한 체내(體內) 축적(蓄積)을 유도(誘導)하였다. Shikimic acid의 축적(蓄積)은 정단엽(頂端葉)의 분열조직(分裂組織)에서 엽록소(葉綠素)의 감소(減少)를 동반(同伴)하였다. 이때 나타나는 황화(黃化)현상은 생장하는 어린잎의 정단조직(頂端組織)에서 향정성(向頂性)인 현상(現象)이었다 엽록소(葉綠素)의 감소(減少)는 glyphosate의 이차효과(二次效果) 내지 삼차효과(三次效果)인 것으로 보인다. 그렇지만 축적(蓄積)된 shikimic acid의 감소(減少)는 처리 5일째부터 정단엽과 뿌리를 제외하고는 감소(減少)하였다. Shikimic acid의 축적(蓄積) 정도는 처리(處理)된 부위(部位)에 따라 매우 다르게 나타났으며, paraquat를 처리(處理)한 하위(下位) 3엽(葉)에서는 3일 후(後)에 토마토의 정단분열조직(頂端分裂組織)에서 shikimic acid의 수준(水準)이 가장 높게 나타났다.

  • PDF