• Title/Summary/Keyword: Lyapunov Method

Search Result 697, Processing Time 0.022 seconds

Robust DTC Control of Doubly-Fed Induction Machines Based on Input-Output Feedback Linearization Using Recurrent Neural Networks

  • Payam, Amir Farrokh;Hashemnia, Mohammad Naser;Fai, Jawad
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.719-725
    • /
    • 2011
  • This paper describes a novel Direct Torque Control (DTC) method for adjustable speed Doubly-Fed Induction Machine (DFIM) drives which is supplied by a two-level Space Vector Modulation (SVM) voltage source inverter (DTC-SVM) in the rotor circuit. The inverter reference voltage vector is obtained by using input-output feedback linearization control and a DFIM model in the stator a-b axes reference frame with stator currents and rotor fluxes as state variables. Moreover, to make this nonlinear controller stable and robust to most varying electrical parameter uncertainties, a two layer recurrent Artificial Neural Network (ANN) is used to estimate a certain function which shows the machine lumped uncertainty. The overall system stability is proved by the Lyapunov theorem. It is shown that the torque and flux tracking errors as well as the updated weights of the ANN are uniformly ultimately bounded. Finally, effectiveness of the proposed control approach is shown by computer simulation results.

Design and Stability Analysis of a Fuzzy Adaptive SMC System for Three-Phase UPS Inverter

  • Naheem, Khawar;Choi, Young-Sik;Mwasilu, Francis;Choi, Han Ho;Jung, Jin-Woo
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.704-711
    • /
    • 2014
  • This paper proposes a combined fuzzy adaptive sliding-mode voltage controller (FASVC) for a three-phase UPS inverter. The proposed FASVC encapsulates two control terms: a fuzzy adaptive compensation control term, which solves the problem of parameter uncertainties, and a sliding-mode feedback control term, which stabilizes the error dynamics of the system. To extract precise load current information, the proposed method uses a conventional load current observer instead of current sensors. In addition, the stability of the proposed control scheme is fully guaranteed by using the Lyapunov stability theory. It is shown that the proposed FASVC can attain excellent voltage regulation features such as a fast dynamic response, low total harmonic distortion (THD), and a small steady-state error under sudden load disturbances, nonlinear loads, and unbalanced loads in the existence of the parameter uncertainties. Finally, experimental results are obtained from a prototype 1 kVA three-phase UPS inverter system via a TMS320F28335 DSP. A comparison of these results with those obtained from a conventional sliding-mode controller (SMC) confirms the superior transient and steady-state performances of the proposed control technique.

MAXIMUM BRAKING FORCE CONTROL UTILIZING THE ESTIMATED BRAKING FORCE

  • Hong, D.;Hwang, I.;SunWoo, M.;Huh, K.
    • International Journal of Automotive Technology
    • /
    • v.8 no.2
    • /
    • pp.211-217
    • /
    • 2007
  • The wheel slip control systems are able to control the braking force more accurately and can be adapted to different vehicles more easily than conventional ABS (Anti-lock Brake System) systems. In realizing the wheel slip control systems, real-time information such as the tire braking force at each wheel is required. In addition, the optimal target slip values need to be determined depending on the braking objectives such as minimum braking distance and stability enhancement. In this paper, a robust wheel slip controller is developed based on the adaptive sliding mode control method and an optimal target slip assignment algorithm is proposed for maximizing the braking force. An adaptive law is formulated to estimate the braking force in real-time. The wheel slip controller is designed based on the Lyapunov stability theory considering the error bounds in estimating the braking force and the brake disk-pad friction coefficient. The target slip assignment algorithm searches for the optimal target slip value based on the estimated braking force. The performance of the proposed wheel slip control system is verified in HILS (Hardware-In-the-Loop Simulator) experiments and demonstrates the effectiveness of the wheel slip control in various road conditions.

Design and Implementation of an Adaptive Sliding-Mode Observer for Sensorless Vector Controlled Induction Machine Drives

  • Zhang, Yanqing;Yin, Zhonggang;Liu, Jing;Tong, Xiangqian
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1304-1316
    • /
    • 2018
  • An adaptive sliding-mode observer for speed estimation in sensorless vector controlled induction machine drives is proposed in this paper to balance the dilemma between the requirement of fast reaching transient and the chattering phenomenon reduction on the sliding-mode surface. It is well known that the sliding-mode observer (SMO) suffers from the chattering phenomenon. However, the reduction of the chattering phenomenon will lead to a slow transient process. In order to balance this dilemma, an adaptive exponential reaching law is introduced into SMO by optimizing the reaching way to the sliding-mode surface. The adaptive exponential reaching law is based on the options of an exponential term that adapts to the variations of the sliding-mode surface and system states. Moreover, the proposed sliding-mode observer considering adaptive exponential reaching law, which is called adaptive sliding-mode observer (ASMO), is capable for reducing the chattering phenomenon and decreasing the reaching time simultaneously. The stability analysis for ASMO is achieved based on Lyapunov stability theory. Simulation and experimental results both demonstrate the correctness and the effectiveness of the proposed method.

Adaptive Sliding Mode Control based on Feedback Linearization for Quadrotor with Ground Effect

  • Kim, Young-Min;Baek, Woon-Bo
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.8 no.2
    • /
    • pp.101-110
    • /
    • 2018
  • This paper introduces feedback linearization (FL) based adaptive sliding mode control (ASMC) effective against ground effects of the quadrotor UAV. The proposed control has the capability of estimation and effective rejection of those effects by adaptive mechanism, which resulting stable attitude and positioning of the quadrotor. As output variables of quadrotor, x-y-z position and yaw angle are chosen. Dynamic extension of the quadrotor dynamics is obtained for terms of roll and pitch control input to be appeared explicitly in x-y-z dynamics, and then linear feedback control including a ground effect is designed. A sliding mode control (SMC) is designed with a class of FL including higher derivative terms, sliding surfaces for which is designed as a class of integral type of resulting closed loop dynamics. The asymptotic stability of the overall system was assured, based on Lyapunov stability methods. It was evaluated through some simulation that attitude control capability is stable under excessive estimation error for unknown ground effect and initial attitude of roll, pitch, and yaw angle of $30^{\circ}$ in all. Effectiveness of the proposed method was shown for quadrotor system with ground effects.

Development of an Adaptive Feedback based Actuator Fault Detection and Tolerant Control Algorithms for Longitudinal Autonomous Driving (적응형 되먹임 기반 종방향 자율주행 구동기 고장 탐지 및 허용 제어 알고리즘 개발)

  • Oh, Kwangseok;Lee, Jongmin;Song, Taejun;Oh, Sechan;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.4
    • /
    • pp.13-22
    • /
    • 2020
  • This paper presents an adaptive feedback based actuator fault detection and tolerant control algorithms for longitudinal functional safety of autonomous driving. In order to ensure the functional safety of autonomous vehicles, fault detection and tolerant control algorithms are needed for sensors and actuators used for autonomous driving. In this study, adaptive feedback control algorithm to compute the longitudinal acceleration for autonomous driving has been developed based on relationship function using states. The relationship function has been designed using feedback gains and error states for adaptation rule design. The coefficients in the relationship function have been estimated using recursive least square with multiple forgetting factors. The MIT rule has been adopted to design the adaptation rule for feedback gains online. The stability analysis has been conducted based on Lyapunov direct method. The longitudinal acceleration computed by adaptive control algorithm has been compared to the actual acceleration for fault detection of actuators used for longitudinal autonomous driving.

Backstepping Sliding Mode-based Model-free Control of Electro-hydraulic Systems

  • Truong, Hoai-Vu-Anh;Trinh, Hoai-An;Ahn, Kyoung-Kwan
    • Journal of Drive and Control
    • /
    • v.19 no.1
    • /
    • pp.51-61
    • /
    • 2022
  • This paper presents a model-free system based on a framework of a backstepping sliding mode control (BSMC) with a radial basis function neural network (RBFNN) and adaptive mechanism for electro-hydraulic systems (EHSs). First, an EHS mathematical model was dedicatedly derived to understand the system behavior. Based on the system structure, BSMC was employed to satisfy the output performance. Due to the highly nonlinear characteristics and the presence of parametric uncertainties, a model-free approximator based on an RBFNN was developed to compensate for the EHS dynamics, thus addressing the difficulty in the requirement of system information. Adaptive laws based on the actor-critic neural network (ACNN) were implemented to suppress the existing error in the approximation and satisfy system qualification. The stability of the closed-loop system was theoretically proven by the Lyapunov function. To evaluate the effectiveness of the proposed algorithm, proportional-integrated-derivative (PID) and improved PID with ACNN (ACPID), which are considered two complete model-free methods, and adaptive backstepping sliding mode control, considered an ideal model-based method with the same adaptive laws, were used as two benchmark control strategies in a comparative simulation. The simulated results validated the superiority of the proposed algorithm in achieving nearly the same performance as the ideal adaptive BSMC.

Design of a real time adaptive controller for industrial robot using TMS320C31 chip (TMS320C31칩을 사용한 산엽용 로보트의 실시간 적응 제어기 설계)

  • Han, S.H.;Kim, Y.T.;Lee, M.H.;Kim, S.K.;Kim, J.O.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.10
    • /
    • pp.94-104
    • /
    • 1996
  • This paper presents a new approach to the design of adaptive control system using DSPs(TMS320C31) for robotic manpulators to achieve accurate trajectory tracking by the joint angles Digital signal processors are used in implementing real time adaptive control algorithms to provide an enhanced motion control for robotic manipulators. In the proposed contorl scheme, adaptation laws are derived from the improved Lyapunov second stability analysis method based on the adaptive model reference control theory. The adaptive controller consists of an adaptive feedforward controller, feedback controller, and PID type time varying auxillary control elements. The proposed adaptive control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Morever, this scheme does not require an accurate dynamic modeling nor values of manpipulator parameters and payload. Performance of the adaptive controller is illustated by simulation and experimental results for a SCARA robot.

  • PDF

Robust Observer Design for SDINS In-Flight Alignment (스트랩다운 관성항법시스템의 주행 중 정렬을 위한 강인 관측기 구성)

  • Yu, Myeong-Jong;Lee, Jang-Gyu;Park, Chan-Guk;Sim, Deok-Seon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.8
    • /
    • pp.703-710
    • /
    • 2001
  • The nonlinear observers are proposed for a nonlinear system. To improve the characteristics such as stability, convergence, and $H^{\infty}$ filter performance criterion, we utilize an $H^{\infty}$ filter Riccati equation or a modified $H^{\infty}$ filter Riccati equation with a freedom parameter. Using the Lyapunov function method, the characteristics of the observers are analyzed. Then the in-flight alignment for a strapdown inertial navigation system(SDINS) is designed using the proposed observer. And the additive quaternion error model is especially used to reduce the uncertainty of the SDINS error model. Simulation results show that the observer with the modified $H^{\infty}$ filter Riccati equation effectively improves the performance of the in-flight alignment.

  • PDF

Adaptive Fuzzy Sliding Mode Control for Nonlinear Systems without Parameter Projection Method (파라미터 투영 기법이 필요 없는 비선형 시스템의 적응 퍼지 슬라이딩 모드 제어)

  • Seo, Sam-Jun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.499-505
    • /
    • 2011
  • In this paper, we proposed an adaptive fuzzy sliding mode control for nonlinear systems without parameter projection method. By modifying the controller structure, the parameters of the estimated input gain function are guaranteed not being identically zero and it is shown that the control scheme will not cause any implementation problem even if the estimated value of input gain function is zero at any moment during on-line operations. Except for the input gain function which an approximate estimate for its lower bound is needed, the proposed control scheme does not assume a priori the exact values of the bounding parameters. Based on Lyapunov synthesis methods, the overall control system guarantees that the tracking error asymptotically converges to zero and that all signals involved in controller are uniformly bounded. This can be illustrated by the simulation results for an inverted pendulum system.