• Title/Summary/Keyword: Lyapunov Method

Search Result 697, Processing Time 0.024 seconds

Formation Flying of small Satellites Using Coulomb Force

  • Lee, Dong-Hun;Lee, Hyun-Jae;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.84-90
    • /
    • 2006
  • The formation flying of satellites has been identified as an enabling technology for many future space missions. The application of conventional thrusters for formation flying usually results in high cost, limited life-time, and a large weight penalty. Various methods including the use of coulomb forces have been considered as an alternative to the conventional thrusters. In the present investigation, we investigate the feasibility of achieving the desired formation using Coulomb forces. This method has several advantages including low cost, light weight and no contamination. A simple controller based on the relative position and velocity errors between the leader and follower satellites is developed. The proposed controller is applied to circular formations considering the effects of disturbances in initial formation conditions as well as system nonlinearity. Results of the numerical simulation state that the proposed controller is successful in establishing circular formations of leader and follower satellites, for a formation size below 100 m.

A Adaptive Scheme design for Identification and Control of multivariable Systems (다변수시스템의 상태식별과 제어를 위한 안정한 적응구조의 설계)

  • Kim, S.K.;Chun, S.Y.;Yim, W.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.69-72
    • /
    • 1987
  • General schemes for the adaptive control and identification of multivariable systems by model reference approach are developed. Lyapunov's direct method and LaSalle's theorem are employed to ensure the stability of these schemes. An added feature is the simplicity of the stable adaptive laws, which depend explicitly on the state variables of plant and model, and on the plant input. Computer simulation results of several examples illustrate the the effectiveness of the proposed schemes.

  • PDF

New Sliding Mode Observer-Model Following Power System Stabilizer Including CLF for Unmeasurable State Variables

  • Lee, Sang-Seung;Park, Jong-Keun
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.3
    • /
    • pp.88-94
    • /
    • 1997
  • This paper presents the sliding mode observer-model following (SMO-MF) power system stabilizer(PSS) for unmeasurable state variables. This SMO-MF PSS is obtained by combining the sliding mode-model following (SM-MF) including closed-loop feedback(CLF) with the full-order observer(FOO). The control input of the proposed MO-MF PSS is derived by Lyapunov's second method to determine a control input that keeps the system stable for unmeasurable plant state variables. Simulation results show that the proposed SMO-MF PSS including CLF is able to reduce the low frequency oscillation and to achieve asymptotic tracking error between the reference mode state and the estimated plant state at different initial conditions.

  • PDF

Multimachine Stabilizer using Sliding Mode Observer-Model Following including CLF for Measurable State Variables

  • Lee, Sang-Seung;Park, Jong-Keun
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.4
    • /
    • pp.53-58
    • /
    • 1997
  • In this paper, the power system stabilizer(PSS) using the sliding mode observer-model following(SMO-MF) with closed-loop feedback (CLF) for single machine system is extended to multimachine system. This a multimachine SMO-MF PSS for unmeasureable plant state variable is obtained by combining the sliding mode-model following(SM-MF) including closed-loop feedback(CLF) with the full-order observer(FOO). And the estimated control input for unmeasurable plant sate variables is derived by Lyapunov's second method to determine a control input that keeps the system stable. Time domain simulation results for the torque angle and for the angular velocity show that the proposed multimachine SMO-MF PSS including CLF for unmeasurable plant sate variables is able to damp out the low frequency oscillation and to achieve asymptotic tracking error between the reference model state at different initial conditions and at step input.

  • PDF

Adaptive Tracking Control of Two-Wheeled Welding Mobile Robot - Dynamic Model Approach -

  • Bui, Trong Hieu;Nguyen, Tan Tien;Suh, Jin-Ho;Kim, Sang-Bong
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2424-2426
    • /
    • 2002
  • This paper proposes an adaptive control method of partially known system and shows its application result to control for two-wheeled WMR. The controlled system is stable in the sense of Lyapunov stability. To design a tracking controller for welding path reference, an error configuration is defined and the controller is designed to drive the error to zero as fast as desired. Moments of inertia of system are considered to be unknown system parameters. Their values are estimated using update laws in adaptive control scheme. The effectiveness of the proposed controller is shown through simulation results.

  • PDF

The Fuzzy Model-Based-Controller for the Control of SISO Nonlinear System (SISO 비선형 시스템의 제어를 위한 퍼지 모델 기반 제어기)

  • Chang, Wook;Kwon, Ok-Kook;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.528-530
    • /
    • 1998
  • This paper addresses analysis and design of a fuzzy model-based-controller for the control of uncertain SISO nonlinear systems. In the design procedure, we represent the nonlinear system by using a Takagi-Sugeno fuzzy model and construct a global fuzzy logic controller via parallel distributed compensation and sliding mode control. Unlike other parallel distributed controllers. this globally stable fuzzy controller is designed without finding a common positive definite matrix for a set of Lyapunov equations, and has good tracking performance. Furthermore, stability analysis is conducted not for the fuzzy model but for the real underlying nonlinear system. A simulation is included for the control of the Duffing forced-oscillation system, to show the effectiveness and feasibility of the proposed fuzzy control method.

  • PDF

Robust Stabilization of Differentially Flat Uncertain Nonlinear Systems (미분적으로 평활한 불확정 비선형 시스템의 강인 안정화)

  • Joo, Jin-Man;Park, Jin-Bae;Choi, Yoon-Ho;Yoon, Tae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.647-649
    • /
    • 1998
  • This paper describes a robust stabilization of single input nonlinear systems with parametric uncertainty. We first investigate differential flatness of the nominal nonlinear systems. If a single input system is differentially flat, it possesses a flat output. And we define coordinate transformation functions via successively differentiating the flat output, and we also consider the robust fictitious controls at every differentiation of the flat output. In the new coordinates the nonlinear system is transformed into the Brunovsky normal form with matched uncertainty. With a robust control based on the Lyapunov method, the robust stabilization is achieved.

  • PDF

Design of $H_{\infty}$ Observer-Based Sliding Mode Controller for Power System Stabilizer : Part II (전력계통안정기를 위한 $H_{\infty}$ 관측기에 기준한 슬라이딩 모드 제어기 설계 : Part II)

  • Lee, Sang-Seung;Park, Jong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.1159-1161
    • /
    • 1997
  • This paper presents a power system stabilizer(PSS) using the $H_{\infty}$ observer-based sliding mode controller($H_{\infty}$ observer-based SMC) for unmeasurable state variables. The effectiveness of the proposed $H_{\infty}$ observer-based SMPSS for unmeasurable state variables is shown by the simulation result.

  • PDF

Delay-dependent Stabilization of Singular Systems with Multiple Internal and External Incommensurate Constant Point Delays

  • Xie, Yong-Fang;Gui, Wei-Hua;Jiang, Zhao-Hui
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.515-525
    • /
    • 2008
  • In this paper, the problem of delay-dependent stabilization for singular systems with multiple internal and external incommensurate constant point delays is investigated. The condition when a singular system subject to point delays is regular independent of time delays is given and it can be easily test with numerical or algebraic methods. Based on Lyapunov-Krasovskii functional approach and the descriptor integral-inequality lemma, a sufficient condition for delay-dependent stability is obtained. The main idea is to design multiple memoryless state feedback control laws such that the resulting closed-loop system is regular independent of time delays, impulse free, and asymptotically stable via solving a strict linear matrix inequality (LMI) problem. An explicit expression for the desired memoryless state feedback control laws is also given. Finally, a numerical example illustrates the effectiveness and the availability for the proposed method.

On Convergence and Parameter Selection of an Improved Particle Swarm Optimization

  • Chen, Xin;Li, Yangmin
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.559-570
    • /
    • 2008
  • This paper proposes an improved particle swarm optimization named PSO with Controllable Random Exploration Velocity (PSO-CREV) behaving an additional exploration behavior. Different from other improvements on PSO, the updating principle of PSO-CREV is constructed in terms of stochastic approximation diagram. Hence a stochastic velocity independent on cognitive and social components of PSO can be added to the updating principle, so that particles have strong exploration ability than those of conventional PSO. The conditions and main behaviors of PSO-CREV are described. Two properties in terms of "divergence before convergence" and "controllable exploration behavior" are presented, which promote the performance of PSO-CREV. An experimental method based on a complex test function is proposed by which the proper parameters of PSO-CREV used in practice are figured out, which guarantees the high exploration ability, as well as the convergence rate is concerned. The benchmarks and applications on FCRNN training verify the improvements brought by PSO-CREV.