• Title/Summary/Keyword: Lyapunov's Second Method

Search Result 24, Processing Time 0.02 seconds

Multimachine Stabilizer using Sliding Mode Observer-Model Following including CLF for Measurable State Variables

  • Lee, Sang-Seung;Park, Jong-Keun
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.4
    • /
    • pp.53-58
    • /
    • 1997
  • In this paper, the power system stabilizer(PSS) using the sliding mode observer-model following(SMO-MF) with closed-loop feedback (CLF) for single machine system is extended to multimachine system. This a multimachine SMO-MF PSS for unmeasureable plant state variable is obtained by combining the sliding mode-model following(SM-MF) including closed-loop feedback(CLF) with the full-order observer(FOO). And the estimated control input for unmeasurable plant sate variables is derived by Lyapunov's second method to determine a control input that keeps the system stable. Time domain simulation results for the torque angle and for the angular velocity show that the proposed multimachine SMO-MF PSS including CLF for unmeasurable plant sate variables is able to damp out the low frequency oscillation and to achieve asymptotic tracking error between the reference model state at different initial conditions and at step input.

  • PDF

Design of $H_{\infty}$ Observer-Based Sliding Mode Controller for Power System Stabilizer : Part II (전력계통안정기를 위한 $H_{\infty}$ 관측기에 기준한 슬라이딩 모드 제어기 설계 : Part II)

  • Lee, Sang-Seung;Park, Jong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.1159-1161
    • /
    • 1997
  • This paper presents a power system stabilizer(PSS) using the $H_{\infty}$ observer-based sliding mode controller($H_{\infty}$ observer-based SMC) for unmeasurable state variables. The effectiveness of the proposed $H_{\infty}$ observer-based SMPSS for unmeasurable state variables is shown by the simulation result.

  • PDF

Design of a real time adaptive controller for industrial robot using TMS320C31 chip (TMS320C31칩을 사용한 산엽용 로보트의 실시간 적응 제어기 설계)

  • Han, S.H.;Kim, Y.T.;Lee, M.H.;Kim, S.K.;Kim, J.O.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.10
    • /
    • pp.94-104
    • /
    • 1996
  • This paper presents a new approach to the design of adaptive control system using DSPs(TMS320C31) for robotic manpulators to achieve accurate trajectory tracking by the joint angles Digital signal processors are used in implementing real time adaptive control algorithms to provide an enhanced motion control for robotic manipulators. In the proposed contorl scheme, adaptation laws are derived from the improved Lyapunov second stability analysis method based on the adaptive model reference control theory. The adaptive controller consists of an adaptive feedforward controller, feedback controller, and PID type time varying auxillary control elements. The proposed adaptive control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Morever, this scheme does not require an accurate dynamic modeling nor values of manpipulator parameters and payload. Performance of the adaptive controller is illustated by simulation and experimental results for a SCARA robot.

  • PDF

A Study on Precise Position Control of Articulated Arm for Manufacturing Process Automation (제조공정자동화를 위한 다관절 아암의 정밀위치제어에 관한 연구)

  • Park, In-Man;Koo, Young-Mok;Jo, Sang-Young;Yang, Jun-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.3
    • /
    • pp.181-190
    • /
    • 2015
  • This paper presents a new approach to control the position of robot arm in workspace a robot manipulator under unknown system parameters and bounded disturbance inputs. To control the motion of the manipulator, an inverse dynamics control scheme was applied. Since parameters of the robot arm such as mass and inertia are not perfectly known, the difference between the actual and estimated parameters was considered as a external disturbance force. To identify the known parameters, an improved robust control algorithm is directly derived from the Lyapunov's Second Method. A robust control algorithm is devised to counteract the bounded disturbance inputs such as contact forces and disturbing forces coming from the difference between the actual and the estimated system parameters. Numerical examples are shown using SCARA arm with four joints.