• Title/Summary/Keyword: Luxo

Search Result 1, Processing Time 0.013 seconds

Luxo character control using deep reinforcement learning (심층 강화 학습을 이용한 Luxo 캐릭터의 제어)

  • Lee, Jeongmin;Lee, Yoonsang
    • Journal of the Korea Computer Graphics Society
    • /
    • v.26 no.4
    • /
    • pp.1-8
    • /
    • 2020
  • Motion synthesis using physics-based controllers can generate a character animation that interacts naturally with the given environment and other characters. Recently, various methods using deep neural networks have improved the quality of motions generated by physics-based controllers. In this paper, we present a control policy learned by deep reinforcement learning (DRL) that enables Luxo, the mascot character of Pixar animation studio, to run towards a random goal location while imitating a reference motion and maintaining its balance. Instead of directly training our DRL network to make Luxo reach a goal location, we use a reference motion that is generated to keep Luxo animation's jumping style. The reference motion is generated by linearly interpolating predetermined poses, which are defined with Luxo character's each joint angle. By applying our method, we could confirm a better Luxo policy compared to the one without any reference motions.