• Title/Summary/Keyword: Luwak

Search Result 3, Processing Time 0.022 seconds

A Comparison of Antioxidant Effects among Non-fermented and Fermented Columbian Coffee, and Luwak Coffee Beans (발효 유무에 따른 콜롬비아 커피와 루왁커피의 항산화 활성 비교연구)

  • Kim, Song-Suk
    • Korean journal of food and cookery science
    • /
    • v.30 no.6
    • /
    • pp.757-766
    • /
    • 2014
  • The purpose of this study was to investigate the antioxidant effects of non-fermented (CAC) and Monascus pilosus-fermented Columbia arabica coffee (FCAC), as well as Luwak coffee (LC) beans. The results indicated that total polyphenols content (mg/g of dry basis) was highest in CAC (70.69), followed by LC (62.07), and FCAC (41.38). However, the ratio of total flavonoids/polyphenols in FCAC was the highest. In terms of electron donating ability (%, coffee mg/mL), CAC was significantly higher than LC and FCAC. Regardless of fermentation, ferric reducing antioxidant powers were similar in CAC and FCAC and lowest in LC. LC also had the highest inhibitory activity against xanthine oxidase (XO). However FAAC had the highest inhibitory activity against aldehyde oxidase (AO), with nearly three times the levels found in CAC and LC. According to the above results, FCAC had a higher ratio of flavonoids/polyphenols and iron chelating activity than CAC. FCAC also had the highest AO inhibitory activity among the three experimental coffee beans. The results suggest that further studies are required to evaluate the bioactive components of various coffee beans so as to determine the potential benefits that coffee may have on preventing oxidative stress-related conditions.

Quality characteristics of in vitro luwak coffee produced using enzyme and microbial complexes (효소 및 미생물 복합체를 사용한 인비트로 루왁 커피의 품질 특성)

  • Hye-Mi Kang;Shin-Yeong Oh;Hye-Min Kang;Joong-Ho Kwon;Yong-Jin Jeong
    • Food Science and Preservation
    • /
    • v.30 no.2
    • /
    • pp.287-299
    • /
    • 2023
  • In vitro luwak coffee was produced using enzyme­microbial complexes. The coffee quality of non-fermented coffee beans (NFC) and fermented coffee beans (FC) was compared. The total free amino acid content was higher in FC than in NFC. The levels of glutamic acid and γ-amino-n-butyric acid in NFC were higher than those in FC; however, the contents of essential amino acids, such as lysine, leucine, and valine, in FC were higher than in NFC. During fermentation, the sucrose content decreased, whereas the fructose and glucose contents increased (p<0.001). The chromaticity of the coffee extract showed higher lightness (L), redness (a), and yellowness (b) values in FC than those in NFC. The caffeine content was significantly lower in FC (696.94±0.04 ㎍/mL) compared to that in NFC (1,130.22±1.55 ㎍/mL) (p<0.001). Conversely, the polyphenol and chlorogenic acid contents were significantly higher in NFC than in FC (p<0.001). Electronic nose analysis indicated considerable differences between the volatile aromatic components in NFC and FC. Sensory scores were significantly higher for FC than those for NFC. Therefore, the fermentation of coffee beans using enzyme­microbial complexes altered the chemical components, which promoted the Maillard reaction during the coffee bean roasting process. These results suggest the possibility of producing in vitro luwak coffee with better flavor and lower caffeine content.