• Title/Summary/Keyword: Lung model

Search Result 692, Processing Time 0.027 seconds

Fe3O4 magnetic nanoparticles provide a novel alternative strategy for Staphylococcus aureus bone infection

  • Youliang, Ren;Jin, Yang;Jinghui, Zhang;Xiao, Yang;Lei, Shi;Dajing, Guo;Yuanyi, Zheng;Haitao, Ran;Zhongliang, Deng;Lei, Chu
    • Advances in nano research
    • /
    • v.13 no.6
    • /
    • pp.575-585
    • /
    • 2022
  • Due to its biofilm formation and colonization of the osteocyte-lacuno canalicular network (OLCN), Staphylococcus aureus (S.aureus) implant-associated bone infection (SIABI) is difficult to cure thoroughly, and may occur recurrently subsequently after a long period dormant. It is essential to explore an alternative therapeutic strategy that can eradicate the pathogens in the infected foci. To address this, the polymethylmethacrylate (PMMA) bone cement and Fe3O4 nanoparticles compound cylinder were developed as implants based on their size and mechanical properties for the alternative magnetic field (AMF) induced thermal ablation, The PMMA mixed with optimized 2% Fe3O4 nanoparticles showed an excellent antibacterial efficacy in vitro. It was evaluated by the CFU, CT scan and histopathological staining on a rabbit 1-stage transtibial screw model. The results showed that on week 7, the CFU of infected soft tissue and implants, and the white blood cells (WBCs) of the PMMA+2% Fe3O4+AMF group decreased significantly from their controls (p<0.05). PMMA+2% Fe3O4+AMF group did not observe bone resorption, periosteal reaction, and infectious reactive bone formation by CT images. Further histopathological H&E and Gram Staining confirmed there was no obvious inflammatory cell infiltration, neither pathogens residue nor noticeably burn damage around the infected screw channel in the PMMA+2% Fe3O4+AMF group. Further investigation of nanoparticle distributions in bone marrow medullary and vital organs of heart, liver, spleen, lung, and kidney. There were no significantly extra Fe3O4 nanoparticles were observed in the medullary cavity and all vital organs either. In the current study, PMMA+2% Fe3O4+AMF shows promising therapeutic potential for SIABI by providing excellent mechanical support, and promising efficacy of eradicating the residual pathogenic bacteria in bone infected lesions.

A basic study for explosion pressure prediction of hydrogen fuel vehicle hydrogen tanks in underground parking lot (지하주차장 수소연료차 수소탱크 폭발 압력 예측을 위한 기초 연구)

  • Lee, Ho-Hyung;Kim, Hyo-Gyu;Yoo, Ji-Oh;Lee, Hu-Yeong;Kwon, Oh-Seung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.605-612
    • /
    • 2021
  • Amid growing global damage due to abnormal weather caused by global warming, the introduction of eco-friendly cars is accelerating to reduce greenhouse gas emissions from internal combustion engines. Accordingly, many studies are being conducted in each country to prepare for the explosion of hydrogen fuel in semi-closed spaces such as tunnels and underground parking lots to ensure the safety of hydrogen-electric vehicles. As a result of predicting the explosion pressure of the hydrogen tank using the equivalent TNT model, it was found to be about 1.12 times and 2.30 times higher at a height of 1.5 meters, respectively, based on the case of 52 liters of hydrogen capacity. A review of the impact on the human body and buildings by converting the predicted maximum explosive pressure into the amount of impact predicted that all predicted values would result in lung damage or severe partial destruction. The predicted degree of damage was applied only by converting the amount of impact caused by the explosion, and considering the additional damage caused by the explosion, it is believed that the actual damage will increase further and safety and disaster prevention measures should be taken.

Ficus vasculosa Wall. ex Miq. Inhibits the LPS-Induced Inflammation in RAW264.7 Macrophages

  • Ji-Won, Park;Jin-Mi, Park;Sangmi, Eum;Jung Hee, Kim;Jae Hoon, Oh;Jinseon, Choi;Tran The, Bach;Nguyen, Van Sinh;Sangho, Choi;Kyung-Seop, Ahn;Jae-Won, Lee
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.4
    • /
    • pp.574-583
    • /
    • 2022
  • Ficus vasculosa Wall. ex Miq. (FV) has been used as a herbal medicine in Southeast Asia and its antioxidant activity has been shown in previous studies. However, it has not yet been elucidated whether FV exerts anti-inflammatory effects on activated-macrophages. Thus, we aimed to evaluate the ameliorative property of FV methanol extract (FM) on lipopolysaccharide (LPS)-induced inflammatory responses and the underlying molecular mechanisms in RAW264.7 macrophages. The experimental results indicated that FM decreased the production of inflammatory mediators (NO/PGE2) and the mRNA/protein expression of iNOS and COX-2 in LPS-stimulated RAW264.7 cells. FM also reduced the secretion of interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α and monocyte chemoattractant protein (MCP)-1 in LPS-stimulated RAW264.7 cells. Results also demonstrated that FM improved inflammatory response in LPS-stimulated A549 airway epithelial cells by inhibiting the production of cytokines, such as IL-1β, IL-6 and TNF-α. In addition, FM suppressed MAPK activation and NF-κB nuclear translocation induced by LPS. FM also upregulated the mRNA/protein expression levels of heme oxygenase-1 and the nuclear translocation of nuclear factor erythroid 2-related factor 2 in RAW264.7 cells. In an experimental animal model of LPS-induced acute lung injury, the increased levels of molecules in bronchoalveolar lavage (BAL) fluid were suppressed by FM administration. Collectively, it was founded that FM has anti-inflammatory properties on activated-macrophages by suppressing inflammatory molecules and regulating the activation of MAPK/NF-κB signaling.

Mesenchymal Stem Cells Attenuate Asthmatic Inflammation and Airway Remodeling by Modulating Macrophages/Monocytes in the IL-13-Overexpressing Mouse Model

  • Yosep Mo;Yujin Kim ;Ji-Young Bang;Jiung Jung;Chun-Geun Lee;Jack A. Elias;Hye-Ryun Kang
    • IMMUNE NETWORK
    • /
    • v.22 no.5
    • /
    • pp.40.1-40.24
    • /
    • 2022
  • Mesenchymal stem cells (MSCs) are attractive alternatives to conventional anti-asthmatic drugs for severe asthma. Mechanisms underlying the anti-asthmatic effects of MSCs have not yet been elucidated. This study evaluated the anti-asthmatic effects of intravenously administered MSCs, focusing on macrophages and monocytes. Seven-week-old transgenic (Tg) mice with lung-specific overexpression of IL-13 were used to simulate chronic asthma. MSCs were intravenously administered four days before sampling. We examined changes in immune cell subpopulations, gene expression, and histological phenotypes. IL-13 Tg mice exhibited diverse features of chronic asthma, including severe type 2 inflammation, airway fibrosis, and mucus metaplasia. Intravenous administration of MSCs attenuated these asthmatic features just four days after a single treatment. MSC treatment significantly reduced SiglecF-CD11c-CD11b+ monocyte-derived macrophages (MoMs) and inhibited the polarization of MoMs into M2 macrophages, especially M2a and M2c. Furthermore, MSCs downregulated the excessive accumulation of Ly6c- monocytes in the lungs. While an intravenous adoptive transfer of Ly6c- monocytes promoted the infiltration of MoM and Th2 inflammation, that of MSC-exposed Ly6c- monocytes did not. Ex vivo Ly6c- MoMs upregulated M2-related genes, which were reduced by MSC treatment. Molecules secreted by Ly6c- MoMs from IL-13 Tg mice lungs upregulated the expression of fibrosis-related genes in fibroblasts, which were also suppressed by MSC treatment. In conclusion, intravenously administered MSCs attenuate asthma phenotypes of chronic asthma by modulating macrophages. Identifying M2 macrophage subtypes revealed that exposure to MSCs transforms the phenotype and function of macrophages. We suggest that Ly6c- monocytes could be a therapeutic target for asthma management.

Clinical Outcomes and Cost-Effectiveness of Osteoporosis Screening With Dual-Energy X-ray Absorptiometry

  • Chiao-Lin Hsu;Pin-Chieh Wu;Chun-Hao Yin;Chung-Hwan Chen;King-Teh Lee;Chih-Lung Lin;Hon-Yi Shi
    • Korean Journal of Radiology
    • /
    • v.24 no.12
    • /
    • pp.1249-1259
    • /
    • 2023
  • Objective: This study aimed to evaluate the clinical outcomes and cost-effectiveness of dual-energy X-ray absorptiometry (DXA) for osteoporosis screening. Materials and Methods: Eligible patients who had and had not undergone DXA screening were identified from among those aged 50 years or older at Kaohsiung Veterans General Hospital, Taiwan. Age, sex, screening year (index year), and Charlson comorbidity index of the DXA and non-DXA groups were matched using inverse probability of treatment weighting (IPTW) for propensity score analysis. For cost-effectiveness analysis, a societal perspective, 1-year cycle length, 20-year time horizon, and discount rate of 2% per year for both effectiveness and costs were adopted in the incremental cost-effectiveness (ICER) model. Results: The outcome analysis included 10337 patients (female:male, 63.8%:36.2%) who were screened for osteoporosis in southern Taiwan between January 1, 2012, and December 31, 2021. The DXA group had significantly better outcomes than the non-DXA group in terms of fragility fractures (7.6% vs. 12.5%, P < 0.001) and mortality (0.6% vs. 4.3%, P < 0.001). The DXA screening strategy gained an ICER of US$ -2794 per quality-adjusted life year (QALY) relative to the non-DXA at the willingness-to-pay threshold of US$ 33004 (Taiwan's per capita gross domestic product). The ICER after stratifying by ages of 50-59, 60-69, 70-79, and ≥ 80 years were US$ -17815, US$ -26862, US$ -28981, and US$ -34816 per QALY, respectively. Conclusion: Using DXA to screen adults aged 50 years or older for osteoporosis resulted in a reduced incidence of fragility fractures, lower mortality rate, and reduced total costs. Screening for osteoporosis is a cost-saving strategy and its effectiveness increases with age. However, caution is needed when generalizing these cost-effectiveness results to all older populations because the study population consisted mainly of women.

Indoleamine 2,3-Dioxygenase in Hematopoietic Stem Cell-Derived Cells Suppresses Rhinovirus-Induced Neutrophilic Airway Inflammation by Regulating Th1- and Th17-Type Responses

  • Ferdaus Mohd Altaf Hossain;Seong Ok Park;Hyo Jin Kim;Jun Cheol Eo;Jin Young Choi;Maryum Tanveer;Erdenebelig Uyangaa;Koanhoi Kim;Seong Kug Eo
    • IMMUNE NETWORK
    • /
    • v.21 no.4
    • /
    • pp.26.1-26.28
    • /
    • 2021
  • Asthma exacerbations are a major cause of intractable morbidity, increases in health care costs, and a greater progressive loss of lung function. Asthma exacerbations are most commonly triggered by respiratory viral infections, particularly with human rhinovirus (hRV). Respiratory viral infections are believed to affect the expression of indoleamine 2,3-dioxygenase (IDO), a limiting enzyme in tryptophan catabolism, which is presumed to alter asthmatic airway inflammation. Here, we explored the detailed role of IDO in the progression of asthma exacerbations using a mouse model for asthma exacerbation caused by hRV infection. Our results reveal that IDO is required to prevent neutrophilic inflammation in the course of asthma exacerbation caused by an hRV infection, as corroborated by markedly enhanced Th17- and Th1-type neutrophilia in the airways of IDO-deficient mice. This neutrophilia was closely associated with disrupted expression of tight junctions and enhanced expression of inflammasome-related molecules and mucin-inducing genes. In addition, IDO ablation enhanced allergen-specific Th17- and Th1-biased CD4+ T-cell responses following hRV infection. The role of IDO in attenuating Th17- and Th1-type neutrophilic airway inflammation became more apparent in chronic asthma exacerbations after repeated allergen exposures and hRV infections. Furthermore, IDO enzymatic induction in leukocytes derived from the hematopoietic stem cell (HSC) lineage appeared to play a dominant role in attenuating Th17- and Th1-type neutrophilic inflammation in the airway following hRV infection. Therefore, IDO activity in HSC-derived leukocytes is required to regulate Th17- and Th1-type neutrophilic inflammation in the airway during asthma exacerbations caused by hRV infections.

Multiparametric Cardiac Magnetic Resonance Imaging Detects Altered Myocardial Tissue and Function in Heart Transplantation Recipients Monitored for Cardiac Allograft Vasculopathy

  • Muhannad A. Abbasi;Allison M. Blake;Roberto Sarnari;Daniel Lee;Allen S. Anderson;Kambiz Ghafourian;Sadiya S. Khan;Esther E. Vorovich;Jonathan D. Rich;Jane E. Wilcox;Clyde W. Yancy;James C. Carr;Michael Markl
    • Journal of Cardiovascular Imaging
    • /
    • v.30 no.4
    • /
    • pp.263-275
    • /
    • 2022
  • BACKGROUND: Cardiac allograft vasculopathy (CAV) is a complication beyond the first-year post-heart transplantation (HTx). We aimed to test the utility of cardiac magnetic resonance (CMR) to detect functional/structural changes in HTx recipients with CAV. METHODS: Seventy-seven prospectively recruited HTx recipients beyond the first-year post-HTx and 18 healthy controls underwent CMR, including cine imaging of ventricular function and T1- and T2-mapping to assess myocardial tissue changes. Data analysis included quantification of global cardiac function and regional T2, T1 and extracellular volume based on the 16-segment model. International Society for Heart and Lung Transplantation criteria was used to adjudicate CAV grade (0-3) based on coronary angiography. RESULTS: The majority of HTx recipients (73%) presented with CAV (1: n = 42, 2/3: n = 14, 0: n = 21). Global and segmental T2 (49.5 ± 3.4 ms vs 50.6 ± 3.4 ms, p < 0.001;16/16 segments) were significantly elevated in CAV-0 compared to controls. When comparing CAV-2/3 to CAV-1, global and segmental T2 were significantly increased (53.6 ± 3.2 ms vs. 50.6 ± 2.9 ms, p < 0.001; 16/16 segments) and left ventricular ejection fraction was significantly decreased (54 ± 9% vs. 59 ± 9%, p < 0.05). No global, structural, or functional differences were seen between CAV-0 and CAV-1. CONCLUSIONS: Transplanted hearts display functional and structural alteration compared to native hearts, even in those without evidence of macrovasculopathy (CAV-0). In addition, CMR tissue parameters were sensitive to changes in CAV-1 vs. 2/3 (mild vs. moderate/severe). Further studies are warranted to evaluate the diagnostic value of CMR for the detection and classification of CAV.

Pulmonary Function, Functional Capacity, Respiratory, and Locomotor Muscle Strength after Severe to Critically Ill COVID-19: A Long-Term Study

  • Thanunya Ngamsutham;Warawut Chaiwong;Sauwaluk Dacha;Patraporn Sitilertpisan;Chaicharn Pothirat;Pilaiporn Duangjit;Athavudh Deesomchok;Chalerm Liwsrisakun;Chaiwat Bumroongkit;Theerakorn Theerakittikul;Atikun Limsukon;Konlawij Trongtrakul;Nutchanok Niyatiwatchanchai;Pattraporn Tajarernmuang
    • Tuberculosis and Respiratory Diseases
    • /
    • v.87 no.4
    • /
    • pp.532-542
    • /
    • 2024
  • Background: The sequelae of post-coronavirus disease 2019 (COVID-19) pneumonia on lung function, exercise capacity, and quality of life were observed in both short-term and long-term. However, the study about the respiratory and locomotor muscle strength in severe and critically ill COVID-19 survivors are still limited. Therefore, we aimed to examine long-term pulmonary function, functional capacities, and respiratory and locomotor body muscle strength in severe to critically ill post-COVID-19 survivors. Methods: A prospective observational study was conducted in 22 post-COVID-19 pneumonia and healthy adults. Clinical characteristics during admission, pulmonary function, functional capacity, respiratory muscles, and locomotor muscles strength were examined at 1, 3, and 6 months after discharge from the hospital. Results: The generalized linear mixed model showed that percent predicted of forced expiratory volume in the 1 second (%FEV1), percent predicted of forced vital capacity (%FVC), maximum inspiratory pressure (MIP), handgrip strength, 6-minute walk distance, and five times sit to stand (5TSTS) were significantly lower in post-COVID-19 pneumonia patients than in healthy subjects during the follow-up period. The percent predicted of maximal voluntary ventilation (%MVV), and locomotor muscle strength were not different between the two groups throughout the follow-up period. Among post-COVID-19 pneumonia patients, %FEV1, %FVC, %MVV, 5TSTS, locomotor muscle strength significantly improved at three months compared to baseline at 1 month. Conclusion: Pulmonary function, functional capacity, respiratory, and locomotor muscle strength of survivors from COVID-19 were impaired and recovery was observed after three to six months. These emphasized the need to evaluate the long-term consequences of COVID-19.

Runx3 inhibits endothelial progenitor cell differentiation and function via suppression of HIF-1α activity

  • SO-YUN CHOO;SOO-HYUN YOON;DONG-JIN LEE;SUN HEE LEE;KANG LI;IN HYE KOO;WOOIN LEE;SUK-CHUL BAE;YOU MIE LEE
    • International Journal of Oncology
    • /
    • v.54 no.4
    • /
    • pp.1327-1336
    • /
    • 2019
  • Endothelial progenitor cells (EPCs) are bone marrow (BM)-derived progenitor cells that can differentiate into mature endothelial cells, contributing to vasculogenesis in the blood vessel formation process. Runt-related transcription factor 3 (RUNX3) belongs to the Runt domain family and is required for the differentiation of specific immune cells and neurons. The tumor suppressive role of RUNX3, via the induction of apoptosis and cell cycle arrest in a variety of cancers, and its deletion or frequent silencing by epigenetic mechanisms have been studied extensively; however, its role in the differentiation of EPCs is yet to be investigated. Therefore, in the present study, adult BM-derived hematopoietic stem cells (HSCs) were isolated from Runx3 heterozygous (Rx3+/-) or wild-type (WT) mice. The differentiation of EPCs from the BM-derived HSCs of Rx3+/- mice was found to be significantly increased compared with those of the WT mice, as determined by the number of small or large colony-forming units. The migration and tube formation abilities of Rx3+/- EPCs were also observed to be significantly increased compared with those of WT EPCs. Furthermore, the number of circulating EPCs, defined as CD34+/vascular endothelial growth factor receptor 2 (VEGFR2)+ cells, was also significantly increased in Rx3+/- mice. Hypoxia-inducible factor (HIF)-1α was upregulated in Rx3+/- EPCs compared with WT EPCs, even under normoxic conditions. Furthermore, in a hindlimb ischemic mouse models, the recovery of blood flow was observed to be highly stimulated in Rx3+/- mice compared with WT mice. Also, in a Lewis lung carcinoma cell allograft model, the tumor size in Rx3+/- mice was significantly larger than that in WT mice, and the EPC cell population (CD34+/VEGFR2+ cells) recruited to the tumor was greater in the Rx3+/- mice compared with the WT mice. In conclusion, the present study revealed that Runx3 inhibits vasculogenesis via the inhibition of EPC differentiation and functions via the suppression of HIF-1α activity.

The Combination of Gefitinib and Acetaminophen Exacerbates Hepatotoxicity via ROS-Mediated Apoptosis

  • Jiangxin Xu;Xiangliang Huang;Yourong Zhou;Zhifei Xu;Xinjun Cai;Bo Yang;Qiaojun He;Peihua Luo;Hao Yan;Jie Jin
    • Biomolecules & Therapeutics
    • /
    • v.32 no.5
    • /
    • pp.647-657
    • /
    • 2024
  • Gefitinib is the well-tolerated first-line treatment of non-small cell lung cancer. As it needs analgesics during oncology treatment, particularly in the context of the coronavirus disease, where patients are more susceptible to contract high fever and sore throat. This has increased the likelihood of taking both gefitinib and antipyretic analgesic acetaminophen (APAP). Given that gefitinib and APAP overdose can predispose patients to liver injury or even acute liver failure, there is a risk of severe hepatotoxicity when these two drugs are used concomitantly. However, little is known regarding their safety at therapeutic doses. This study simulated the administration of gefitinib and APAP at clinically relevant doses in an animal model and confirmed that gefitinib in combination with APAP exhibited additional hepatotoxicity. We found that gefitinib plus APAP significantly exacerbated cell death, whereas each drug by itself had little or minor effect on hepatocyte survival. Mechanistically, combination of gefitinib and APAP induces hepatocyte death via the apoptotic pathway obviously. Reactive oxygen species (ROS) generation and DNA damage accumulation are involved in hepatocyte apoptosis. Gefitinib plus APAP also promotes the expression of Kelch-like ECH-associated protein 1 (Keap1) and downregulated the antioxidant factor, Nuclear factor erythroid 2-related factor 2 (Nrf2), by inhibiting p62 expression. Taken together, this study revealed the potential ROS-mediated apoptosis-dependent hepatotoxicity effect of the combination of gefitinib and APAP, in which the p62/Keap1/Nrf2 signaling pathway participates and plays an important regulatory role.