• 제목/요약/키워드: Lung lavage

검색결과 334건 처리시간 0.028초

Compound-A inhibited the Asthmatic Responses in the Conscious Guinea Pigs

  • Lee, Ji-Yun;Lee, Jin-Hee;Kim, Youn-Joung;Sim, Sang-Soo;Kim, Chang-Jong
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.127.1-127.1
    • /
    • 2003
  • Effect of Compound-A, a phenylpropanoid isolated from Arctium lappa fruit, on the early- (EAR) and late-phase asthmatic responses (LAR) of guinea pigs were studied in vivo. Guinea pigs were sensitized by injection of 100 mg of ovalbumin (OA). Twenty-one days after sensitization, animals were challenged with exposure to aerosolized 1 % OA for five minutes in double-chambered plethysmograph box with jet nubulizer. Immediately and twenty-four hours after challenge, EAR and LAR ashmatic responses were determined the tidal volume (TV), respiration rate (RR) and specific airway resistance (sRaw), and then animals anethetized and taken the bronchoalveolar lavage fluid (BALF) by lavage the lung with HEPES buffer through cannulation into trachea. (omitted)

  • PDF

Nontuberculous Mycobacterial Lung Disease Caused by Mycobacterium terrae in a Patient with Bronchiectasis

  • Koh, Won-Jung;Choi, Go-Eun;Lee, Nam-Yong;Shin, Sung-Jae
    • Tuberculosis and Respiratory Diseases
    • /
    • 제72권2호
    • /
    • pp.173-176
    • /
    • 2012
  • We report a rare case of lung disease caused by Mycobacterium terrae in a previously healthy woman. A 45-year-old woman was referred to our hospital due to a chronic cough with sputum. A computed tomography scan of the chest revealed bronchiolitis in conjuction with bronchiectasis in both lungs. Nontuberculous mycobacteria were identified and isolated from the bronchoalveolar lavage fluid collected from each lung. All isolates were identified as M. terrae by various molecular methods that characterized the rpoB and hsp65 gene sequences. Antibiotic therapy using clarithromycin, rifampin, and ethambutol improved the patient's condition and successfully resulted in sputum conversion.

Expression of peroxisome proliferator-activated receptor (PPAR)-${\alpha}$ and PPAR-${\gamma}$ in the lung tissue of obese mice and the effect of rosiglitazone on proinflammatory cytokine expressions in the lung tissue

  • Ryu, Seung Lok;Shim, Jae Won;Kim, Duk Soo;Jung, Hye Lim;Park, Moon Soo;Park, Soo-Hee;Lee, Jinmi;Lee, Won-Young;Shim, Jung Yeon
    • Clinical and Experimental Pediatrics
    • /
    • 제56권4호
    • /
    • pp.151-158
    • /
    • 2013
  • Purpose: We investigated the mRNA levels of peroxisome proliferator-activated receptor (PPAR)-${\alpha}$, PPAR-${\gamma}$, adipokines, and cytokines in the lung tissue of lean and obese mice with and without ovalbumin (OVA) challenge, and the effect of rosiglitazone, a PPAR-${\gamma}$ agonist. Methods: We developed 6 mice models: OVA-challenged lean mice with and without rosiglitazone; obese mice with and without rosiglitazone; and OVA-challenged obese mice with and without rosiglitazone. We performed real-time polymerase chain reaction for leptin, leptin receptor, adiponectin, vascular endothelial growth factor (VEGF), tumor necrosis factor (TNF)-${\alpha}$, transforming growth factor (TGF)-${\beta}$, PPAR-${\alpha}$ and PPAR-${\gamma}$ from the lung tissue and determined the cell counts and cytokine levels in the bronchoalveolar lavage fluid. Results: Mice with OVA challenge showed airway hyperresponsiveness. The lung mRNA levels of PPAR${\alpha}$ and PPAR-${\gamma}$ increased significantly in obese mice with OVA challenge compared to that in other types of mice and decreased after rosiglitazone administeration. Leptin and leptin receptor expression increased in obese mice with and without OVA challenge and decreased following rosiglitazone treatment. Adiponectin mRNA level increased in lean mice with OVA challenge. Lung VEGF, TNF-${\alpha}$, and TGF-${\beta}$ mRNA levels increased in obese mice with and without OVA challenge compared to that in the control mice. However, rosiglitazone reduced only TGF-${\beta}$ expression in obese mice, and even augmented VEGF expression in all types of mice. Rosiglitazone treatment did not reduce airway responsiveness, but increased neutrophils and macrophages in the bronchoalveolar lavage fluid. Conclusion: PPAR-${\alpha}$ and PPAR-${\gamma}$ expressions were upregulated in the lung tissue of OVA-challenged obese mice however, rosiglitazone treatment did not downregulate airway inflammation in these mice.

A Study on the Mechanism of Immunomodulating Effects of Moxifloxacin in Oleic Acid-Induced Acute Lung Injury

  • Lee, Young-Man
    • Tuberculosis and Respiratory Diseases
    • /
    • 제71권2호
    • /
    • pp.97-105
    • /
    • 2011
  • Background: It was hypothesized that the immunomodulating effects of moxifloxacin contribute to ameliorate oleic acid (OA)-induced acute lung injury (ALI) by suppression of cytosolic phospholipase A2 (cPLA2). This was based on observations from experiments on rats associated with neutrophilic respiratory burst, cPLA2 activity, and expressions of cPLA2, $TNF{\alpha}$, and COX-II in the lung. Methods: ALI was induced by intravenous injection of OA in male Sprague-Dawley rats. Five hours after OA injection, protein content in bronchoalveolar lavage (BAL), lung myeloperoxidase (MPO) activity, and numbers of BAL neutrophils were measured. As an index of oxidative stress-induced lung injury, the content of malondialdehyde (MDA) in lung tissues was also determined. Lung histology, immunohistochemistry and determination of activity of cPLA2 in lung tissues were carried out. In addition, Western blotting of $TNF{\alpha}$ and COX-II in lung tissues was performed. Results: The accumulation of neutrophils in the lungs was observed after OA injection. BAL protein was increased along with neutrophilic infiltration and migration by OA. Moxifloxacin decreased all of these parameters of ALI and ameliorated ALI histologically. The increased malondialdehyde (MDA) in the lung by OA was also decreased by moxifloxacin. Moxifloxacin not only suppressed cPLA2 expression in the lungs and neutrophils but also decreased cPLA2 activity in lung tissues of rats given OA. The enhanced expressions of $TNF{\alpha}$ and COX-2 in the lung tissues of rats given OA were also suppressed by moxifloxacin. Conclusion: Moxifloxacin inhibited cPLA2 and down-regulated $TNF{\alpha}$ and COX-2 in the lungs of rats given OA, which resulted in the attenuation of inflammatory lung injury.

황기가 C57BL/6J 생쥐의 Bleomycin유발 폐섬유화에 미치는 영향 (The Effects of Astragali Radix on Bleomycin-induced Lung Fibrosis)

  • 이경희;정희재;정승기;윤유식;이형구
    • 대한한의학회지
    • /
    • 제25권2호
    • /
    • pp.41-50
    • /
    • 2004
  • Backgrounds & Objectives: Many acute and chronic lung disorders with variable degrees of pulmonary inflammation and fibrosis are collectively referred to as interstitial lung diseases. Idiopathic pulmonary fibrosis (IPF) is one of several idiopathic interstitial pneumonias with the pathogenesis unclear. Astragali Radix is known to inhibit the Th2 immune response. The effects of Astragali Radix on bleomycin-induced lung fibrosis were evaluated. Materials and Methods: Astragali Radix extract was daily given to the normal rats, control (bleomycin) and treated (bleomycin and Astragali Radix extract, 24.0 mg/10g body weight) rats for 14 days. After 14 days, we observed the change of total leukocyte count and percentage, IFN-gamma and IL-4 in BALF (Bronchoalveolar lavage fluid), and of semiquantitative histological index (SHI). Results: Compared to the control group, Astragali Radix decreased total leukocyte count (p<0.05), lymphocyte (p<0.05), neutrophil (no significance) percentage, SHI (p<0.05), IFN-gamma and IL-4 (p<0.05). Otherwise, macrophage percentage was increased (p<0.01). Conclusion: This study showed that Astragali Radix reduced the incidence of inflammatory cells and cytokines and prevented the fibrosis of tissue in bleomycin-induced lung fibrosis rats.

  • PDF

Effect of Apocynin on Acute Lung Injury in Rats Given Interleukin-$1{\alpha}$ Intratracheally

  • Lee, Young-Man
    • Tuberculosis and Respiratory Diseases
    • /
    • 제70권6호
    • /
    • pp.482-489
    • /
    • 2011
  • Background: Based on the assertion that apocynin diminishes acute lung injury (ALI) by inhibition of NADPH oxidase, the effect of apocynin was tested in interleukin-$1{\alpha}$ (IL-1)-induced ALI in rats. Methods: IL-1 was insufflated into the trachea of Sprague-Dawley rats to induce ALI, and apocynin (8 mg/kg) was given intravenously for inhibition of NADPH oxidase. In addition, we determined whether apocynin inhibited generation of superoxide anions from isolated human neutrophils. Five hours after IL-1 instillation, lung injury parameters, expression of cytosolic phospholipase A2 (cPLA2) by cells from bronchoalveolar lavage (BAL), an index of oxidative stress in lung tissues (${\gamma}$-glutamyltranspeptidase, activity), and ultrastructure of alveolar type II (AT II) cells were evaluated. Results: Apocynin decreased the generation of free radicals from phorbol myristate (PMA)-activated neutrophils in vitro, but did not ameliorate ALI. IL-1 induced enhancement of the expression of cPLA2 on neutrophils was not altered by apocynin. Conclusion: Apocynin induced suppression of the generation of superoxide anions from neutrophils by inhibition of NADPH oxidase does not attenuate IL-1-induced ALI in rats.

Cyclohexane에 의한 랫드의 폐손상 기전 (Mechanism of Lung Damage Induced by Cyclohexane in Rats)

  • 전태원;윤종국
    • Toxicological Research
    • /
    • 제18권2호
    • /
    • pp.159-165
    • /
    • 2002
  • Recently, we reported (korean J. Biomed. Lab. Sci., 6(4): 245-251, 2000) that cyclohexane (l.56 g/kg of body wt., i.p.) administration led to lung injury in rats. However the detailed mechanism remain to be elucidated. This study was designed to clarify the mechanism of lung damage induced by cyclohexane in rats. First, lung damage was assessed by quantifying bronchoalveolar lavage fluid (BAL) protein content as well us by histopathological examination. Second, activities of serum xanthine oxidase (XO), pulmonary XO and oxygen free radical scavenging enzymes. XO tope conversion (O/D + O, %) ratio and content of reduced glutathione (GSH) were determined. In the histopathological findings, the vasodilation, local edema and hemorrhage were demonstrated in alveoli of lung. And vascular lumens filled with lipid droplets, increased macrophages in luminal margin and increased fibroblast-like interstitial cells in interstitial space were observed in electron micrographs. The introperitoneal treatment of cyclohexane dramatically increased BAL protein by 21-fold compared with control. Cyclohexane administration to rats led to a significant rise of serum and pulmonary XO activities and O/D + O ratio by 47%,30% and 24%, respectively, compared witれ control. Furthermore, activities of pulmonary oxygen free radical scavenging enzymes such as superoxide dismutase, glutathione peroxidase and glutathione S-transferase, and GSH content were not found to be statistically different between control and cyclohexane-treated rats. These results indicate that intraperitoneal injection of cyclohexane to rats may induce the lipid embolism in pulmonary blood vessel and lead to the hypoxia with the ensuing of oxygen free radical generation, and which may be responsible for the pulmonary injury.

The Effects of Platycodi Radix on the Induction of LPS and the Activation of $NF-{\kappa}Bp$, the Lung Disease of White Rats

  • Kim Hyun-Joong;Park Dong-Il;Kim Won-Il
    • 대한한의학회지
    • /
    • 제26권1호
    • /
    • pp.18-25
    • /
    • 2005
  • Objective & Methods: We examined the effects of Platycodi radix on the process of lipopolysaccharide (LPS)-induced nuclear factor $NF-{\kappa}Bp65$ and inhibitory $(I)-{\kappa}B{\alpha}$ alteration in RAW 264.7 cells and acute lung injury in rats. Results: Immunoblot analysis showed that LPS-induced degradation of $I-{\kappa}B{\alpha}$ in RAW 264.7 was inhibited by pretreatment of Platycodi radix. The total cells of bronchoalveolar lavage fluid by LPS challenge markedly decreased in the Platycodi radix pretreatment rats. Platycodi radix pretreatment also caused a decline in neutrophils infiltration into interstitium of the lung. In the alveolar macrophages and neutrophils, decreased $NF-{\kappa}Bp65$ and inducible nitric oxide synthase and increased $I-{\kappa}B{\alpha}$ immunoreaction were detected in Platycodi radix pretreated rats compared with LPS alone treated ones. Conclusion : It may be concluded that Platycodi radix attenuates the development of LPS-induced inflammation by reduction of $NF-{\kappa}Bp65$ activation and neutrophil-mediated acute lung injury. Platycodi radix would be useful as a therapeutic agent for endotoxin-induced lung disease.

  • PDF

Kamgil-Tang attenuates lipopolysaccharide-induced NF-${\kappa}$B activation in RAW 264.7 cell and acute lung injury in rats

  • Park, Dong-Il;Kim, Do-Hyun;Choi, Byung-Tae
    • Journal of Life Science
    • /
    • 제10권2호
    • /
    • pp.55-60
    • /
    • 2000
  • We examined the effects of Kamgil-Tang on the process of lipopolysaccharide (LPS)-induced unclear factor (NF)-${\kappa}$ Bp65 and inhibitory (I)-${\kappa}$ B${\alpha}$ alteration in RAW 264.7 cell and acute lung injury in rats. Immunoblot analysis showed that LPS-induced degradation of I-${\kappa}$ B${\alpha}$ in RAW 264.7 was inhibited by pretreatment of Kamgil-Tang. The total cells of bronchoalveolar lavage fluid by LPS challenge markedly decreased in the Kamgil-Tang pretreatment rats. Kamgil-Tang pretreatment caused also a decline in neutrophils infiltration into interstitium of the lung. In the alveolar macrophages and neutrophils, decreased NF-${\kappa}$ Bp65 and inducible nitric oxide synthase and increased I-${\kappa}$ B${\alpha}$ immunoreaction were detected in Kamgil-Tang pretreated rats compared with LPS alone treated ones. It may be concluded that Kamgil-Tang attenuates the development of LPS-induced inflammation by reduction of NF-${\kappa}$ Bp65 activation and neutrophil-mediated acute lung injury. Kamgil-Tang would be useful as a therapeutic agent for endotoxin-induced lung disease.

  • PDF

Blood Levels of IL-Iβ, IL-6, IL-8, TNF-α, and MCP-1 in Pneumoconiosis Patients Exposed to Inorganic Dusts

  • Lee, Jong-Seong;Shin, Jae-Hoon;Lee, Joung-Oh;Lee, Won-Jeong;Hwang, Joo-Hwan;Kim, Ji-Hong;Choi, Byung-Soon
    • Toxicological Research
    • /
    • 제25권4호
    • /
    • pp.217-224
    • /
    • 2009
  • Inhaled inorganic dusts such as coal can cause inflammation and fibrosis in the lung called pneumoconiosis. Chronic inflammatory process in the lung is associated with various cytokines and reactive oxygen species (ROS) formation. Expression of some cytokines mediates inflammation and leads to tissue damage or fibrosis. The aim of the present study was to compare the levels of blood cytokines interleukin (IL)-$1\beta$, IL-6, IL-8, tumor necrosis factor (TNF)-$\alpha$ and monocyte chemoatlractant protein (MCP)-1 among 124 subjects (control 38 and pneumoconiosis patient 86) with category of chest x-ray according to International Labor Organization (ILO) classification. The levels of serum IL-8 (p= 0.003), TNF-$\alpha$ (p=0.026), and MCP-1 (p=0.010) of pneumoconiosis patients were higher than those of subjects with the control. The level of serum IL-8 in the severe group with the small opacity (ILO category II or III) was higher than that of the control (p=0.035). There was significant correlation between the profusion of radiological findings with small opacity and serum levels of IL-$1\beta$(rho=0.218, p<0.05), IL-8 (rho=0.224, p<0.05), TNF-$\alpha$ (rho=0.306, p<0.01), and MCP-1 (rho=0.213, p<0.01). The serum levels of IL-6 and IL-8, however, did not show significant difference between pneumoconiosis patients and the control. There was no significant correlation between serum levels of measured cytokines and other associated variables such as lung function, age, BMI, and exposure period of dusts. Future studies will be required to investigate the cytokine profile that is present in pneumoconiosis patient using lung specific specimens such as bronchoalveolar lavage fluid (BALF), exhaled breath condensate, and lung tissue.