Background: To systematically review studies on inhaled corticosteroids (ICS) and lung cancer incidence in chronic airway disease patients. Methods: We conducted electronic bibliographic searches on OVID-MEDLINE, EMBASE, and the Cochrane Database before May 2020 to identify relevant studies. Detailed data on the study population, exposure, and outcome domains were reviewed. Results: Of 4,058 screened publications, 13 eligible studies in adults with chronic obstructive pulmonary disease (COPD) or asthma evaluated lung cancer incidence after ICS exposure. Pooled hazard ratio and odds ratio for developing lung cancer in ICS exposure were 0.81 (95% confidence interval, 0.64 to 1.02; I2=95.7%) from 10 studies and 1.02 (95% confidence interval 0.50 to 2.07; I2=94.7%) from three studies. Meta-regression failed to explain the substantial heterogeneity of pooled estimates. COPD and asthma were variously defined without spirometry in 11 studies. Regarding exposure assessment, three and 10 studies regarded ICS exposure as a time-dependent and fixed variable, respectively. Some studies assessed ICS use for the entire study period, whereas others assessed ICS use for 6 months to 2 years within or before study entry. Smoking was adjusted in four studies, and only four studies introduced 1 to 2 latency years in their main or subgroup analysis. Conclusion: Studies published to date on ICS and lung cancer incidence had heterogeneous study populations, exposures, and outcome assessments, limiting the generation of a pooled conclusion. The beneficial effect of ICS on lung cancer incidence has not yet been established, and understanding the heterogeneities will help future researchers to establish robust evidence on ICS and lung cancer incidence.
This experiment was carried out to evaluate the effects of Korean ginseng extract on carcinogenesis induced by various chemical carcinogens. Red ginseng extract was used for this study and was administered orally to the experimental animals. Carcinogens that were injected in subscapsular region of ICR newborn mice within 24 hours after birth were 9,10-dimethyl-1,2-benzan-thracene (DMBA), urethane, N-2-fluorenylacetamide(AAF), aflatoxin $B_1$ and tobacco smoke condensate. N -methyl-N -nitroso-N'-nitroguani-dine(MNNG) was injected subcutaneously at the back of wistar rats. Experimental animals were autopsied in immediately after being sacrificed. All major organs were examined grossly and weighted. After fixation histopathological preparations were made for microscopical study. Following results were obtained. In DMBA group sacrificed at the 26th week after the treatment with DMBA, the incidence of lung adenoma was $77\%$ and the average number of the tumor was 17. However, in DMBA combined with red ginseng group, the incidence was $78\%$ and the average number of lung adenoma was 14.1. This indicates that ginseng extract had no effect on the incidence of lung adenoma but decreased the average number of lung adenoma by $17\%.$ In DMBA group sacrificed at the 48th week after the injection of DMBA, the lung adenoma incidence was $88\%.$ The average diameter of the largest lung adenoma was 3.5 cm, the incidence of diffuse pulmonary infiltration was $18\%$ and the average lung weight of male experimental mice was $528.2{\pm}469.1\;gm.$ On the other hand, in DMBA combined with red ginseng group sacrificed at the 48th week, the incidence of lung adenoma was $96\%.$ The average diameter of the largest adenoma was 2.7 cm, the incidence of diffuse pulmonary infiltration was $7\%$ and the average lung weight of male mice was $418.0{\pm}520\;gm.$ These observations show that ginseng extract did not have any inhibitory effect on the incidence of lung adenoma but decreased the average diameter of the largest lung adenoma by $23\%,$ the incidence of duffuse pulmonary infiltration by $63\%$ and the average lung weight of male experimental mice by $21\%.$ From these results we have found that the prolonged administration with ginseng extract showed no inhibitory effect on the incidence of adenoma but it had the inhibitory effect on the proliferation of lung adenomas induced by DMBA. In urethane group sacrificed at the 28th week after the injection of urethane, the incidence of lung adenoma was $94\%$ and the average number of lung adenoma was 8.6. In urethane combined with red ginseng group, the. incidence of lung adenoma was $73\%$ and the average number of adenoma was 6.0. These results indicate that there were $22\%$ decrease of the lung adenoma incidence and $31\%$ decrease of the average number of adenoma in urethane combined with red ginseng group. And in urethane group sacrificed at the 50th week, the incidence of lung adenoma was $98\%$ and the incidence of diffuse pulmonary infiltration was $14\%$. In urethane combined with ginseng group the incidence of lung adenoma was $85\%$ and the incidence of diffuse pulmonary infiltration was $12\%$. Therefore the ginseng administration resulted in $15\%$ decrease of the lung adenoma incidence and $14\%$ decrease of the diffuse pulmonary infiltration incidence. From these results we knew that the prolonged administration with ginseng extract inhibited the incidence and also the proliferation of the lung adenoma induced by urethane. Lung adenoma and hepatoma were induced in the experimental mice sacrificed at the 68th week but not in the experimental mice sacrificed at the 28th week after the injection of AAF. In AAF group sacrificed at the 68th week after the injection of AAF the incidence of lung adenoma was $18\%$ and the incidence of hepatoma was $27\%$. And in AAF combined with ginseng group the lung adenoma incidence was $12\%$ and the hepatoma incidence was $37\%$. So the ginseng seemed to decrease the lung adenoma incidence by AAF, but we were unable to conclude the significant inhibitory effect of the ginseng extract on the incidence of lung adenoma by AAF because the above incidence of lung adenoma were similar to that of control group which was $11\%$. And these experimental data revealed that ginseng extract didn't have any inhibitory effect on the incidence of hepatoma induced by AAF. In aflatoxin $B_1$ group sacrificed at the 56th week, the incidence of lung adenoma was $24\%$ and hepatoma was $11\%$. However in aflatoxin $B_1$ combined with ginseng group the incidence of lung adenoma was $17\%$ and hepatoma was $3\%$ These results indicate that there were $29\%$ decrease of the lung adenoma incidence and $75\%$ decrease of the hepatoma incidence in aflatoxin $B_1$ combined with ginseng group. In tobacco smoke condensate experimental group sacrificed at 67th week, no tumors were induced except just a few lung adenoma. The lung adenoma incidence both in tobacco smoke condensate group and in tobacco smoke condensate combined with ginseng group was $8\%$. And this incidence rate was similar to that of control group. These results indicate that the injection of 320 ug tobacco smoke condensate per ICR newborn mouse was unable to induce lung adenoma in our experiments. In MNNG group sacrificed at the 27th week the tumor incidence was $38.5\%$ and in MNNG combined with ginseng extract group was $37\%$. In MNNG group for investigation of the life span of tumor bearing rats the tumor incidence was $93\%$ and the average life span of tumor bearing rats was 318 days. And in MNNG combined with ginseng extract group the tumor incidence was $96\%$ and the average life span was 337 days. Tumor induced by MNNG was almost sarcoma. This indicates that there was no inhibitory effect of ginseng extract on the tumor incidence, but the extract prolonged the average life span of tumor bearing rats by approximately 19 days.
Background: Lung cancer is the most frequent cancer among men and second highest among women overall, including in Turkey. Cigarette smoking is the most important etiologic factor for the development of cancer in both men and women. Objective: To determine the lung cancer incidence in Northeastern Anatolia Region of Turkey with a focus on clinical properties, cancer subtypes, the relationships of tumors with cigarette smoking and radiological properties of the lesions. Materials and Methods: In a retrospective study design, 566 lung cancer cases diagnosed at the Pathology Department of Ataturk University in Erzurum over the last seven years extending from January 2006 to June 2012 were investigated. The results were compared with statistical analyses. Results: The most common histopathological subtype of primary bronchogenic carcinoma in our study was found to be the squamous cell carcinoma, 46.1% (261 out of 566), and the second was small cell lung carcinoma 15.7% (89 out of 566). Based on our data, an overall male predominance was noted with a male/female ratio of 6.1/1. While 296 (52.2%) of the patients were found to be smokers at the time of diagnosis, 125 (22.0%) were nonsmokers and 145 (25.6%) were ex-smokers. Smoking status was found to have a strong correlation with primary lung cancer (p<0.05), and there were significant differences between males and females (p<0.001). Conclusion: Although relative prominence of subtypes of lung cancers differ between Turkish and other populations, lung cancer overall remains as an important health problem in Turkey. Our findings stress the critical need for effective cancer prevention programs such as anti-smoking campaigns.
Objectives : Effective cancer prevention and control measures can only be done when dependable data on the cancer incidence is available. The Seoul Cancer Registry (SCR) was founded to provide valid, comparable and representative cancer incidence data for Koreans. We aimed to compare the cancer incidence in the first (1993-1997) and second term (1998-2002) of the SCR, and we analyzed the annual incidence trend during that 10 years. Methods : The SCR detects potential cancer cases through the Korean Central Cancer Registry (KCCR) data, the health insurance claims, the individual hospital's discharge records and the death certificates. About 87% of the SCR data is registered through the KCCR. The rest of the data is registered by SCR registrars who visit about $70{\sim}80$ mid-sized hospitals in Seoul to review and abstract the medical records of the potential cancer patients. Results: The total number of new cancer cases was higher in $1998{\sim}2002$ than in $1993{\sim}1997$ by 20.6% for men and 18.4% for women, respectively. The age-standardized rate (ASR) of total cancer per 100,000 increased 1% (from 295.4 to 298.3) for men and 5.1% (from 181.5 to 190.7) for women, between the two periods. The commonest cancer sites during 1998-2002 for men were stomach, liver, bronchus/lung, colorectum, bladder and prostate, and the commonest cancer sites for women were breast, stomach, colorectum, cervix uteri, thyroid and bronchus/lung. Compared with the ASRs in 1993, the ASRs in 2002 increased for colorectum (58.4% for men, 27.1% for women), prostate (81.5%), breast (58.3% for women), thyroid (141% for women), and bronchus/lung (15.4% for women). The ASRs for stomach (-18.7% for men, -20.7% for women) and uterine cervix cancer (-39.7%) had decreased. Conclusions : The cancer incidence is increasing in Seoul, Korea, especially for the colorectum and prostate for men, and for the breast, colorectum, bronchus/lung and thyroid for women.
Objectives: The aim of this study was to investigate the association between Vietnam experience including exposure to military herbicides and cancer incidence in Korean Vietnam War veterans. Methods: The cancer cases of 185 265 Vietnam veterans from January 1, 1992 to December 31, 2003 were confirmed from the Korea National Cancer Incidence Database. The age-adjusted incidence and standardized incidence ratios (SIRs) were calculated using the male population during 1992 to 2003 as a standard population. Results: The age-adjusted overall cancer incidence per 100 000 person-years was 455.3 in Vietnam veterans. The overall cancer incidence was slightly yet significantly lower in veterans (SIR, 0.97; 95% confidence interval, 0.95 to 0.99) than in the general population. The overall cancer incidence in enlisted soldiers was not lower (SIR, 1.00), whereas that in officers was significantly lower (SIR, 0.87) than in the general population. The incidences of prostate cancer and T-cell lymphoma in all veterans, and lung cancer and bladder cancer in enlisted soldiers, and colon cancer and kidney cancer in non-commissioned officers, and colon cancer, kidney cancer, and prostate cancer in officers, were higher than in the general population. The SIR for overall cancer among Vietnam veterans rose from 0.92 for 1992-1997 to 0.99 for 1998-2003. Conclusions: The overall cancer incidence in Vietnam veterans was not higher than in the general male population. Vietnam veterans and military rank subcohorts experienced a higher incidence of several cancers, including prostate cancer, T-cell lymphoma, lung cancer, bladder cancer, kidney cancer, and colon cancer than the general population. The SIR for overall cancer increased over time in Vietnam veterans.
Background: A very high incidence of lung cancer is observed in Mizoram and Manipur, North East India. We conducted a population based case control study to establish associations of p53 codon 72 polymorphisms and interactions with environmental factors for this high incidence. Material and Methods: A total of 272 lung cancer cases and 544 controls matched for age (${\pm}5years$), sex and ethnicity were collected and p53 codon 72 polymorphism genotypes were analyzed using a polymerase chain based restriction fragment length polymorphism assay. We used conditional multiple logistic regression analysis to calculate adjusted odds ratios and 95% confidence intervals after adjusting for confounding factors. Results: p53 Pro/Pro genotype was significantly associated with increased risk of lung cancer in the study population (adjusted OR=2.14, CI=1.35-3.38, p=0.001). Interactions of the p53 Pro/Pro genotype with exposure to wood smoke (adjusted OR=3.60, CI=1.85-6.98, p<0.001) and cooking oil fumes (adjusted OR=3.27, CI=1.55-6.87, p=0.002), betel quid chewing (adjusted OR=3.85, CI=1.96-7.55, p<0.001), tobacco smoking (adjusted OR=4.42, CI=2.27-8.63, p<0.001) and alcohol consumption (adjusted OR=3.31, CI=1.10-10.03, p=0.034) were significant regarding the increased risk of lung cancer in the study population. Conclusions: The present study provided preliminary evidence that a p53 codon 72 polymorphism may effect lung cancer risk in the study population, interacting synergistically with environmental factors.
Lung cancer is a chronic disease which ranks fourth in cancer incidence with 11 percent of the total cancer incidence in Korea. To deal with such issues, there is an active study on the usefulness and utilization of the Clinical Decision Support System (CDSS) which utilizes machine learning. Thus, this study reviews existing studies on artificial intelligence technology that can be used in determining the lung cancer, and conducted a study on the applicability of machine learning in determination of the lung cancer by comparison and analysis using Azure ML provided by Microsoft. The results of this study show different predictions yielded by three algorithms: Support Vector Machine (SVM), Two-Class Support Decision Jungle and Multiclass Decision Jungle. This study has its limitations in the size of the Big data used in Machine Learning. Although the data provided by Kaggle is the most suitable one for this study, it is assumed that there is a limit in learning the data fully due to the lack of absolute figures. Therefore, it is claimed that if the agency's cooperation in the subsequent research is used to compare and analyze various kinds of algorithms other than those used in this study, a more accurate screening machine for lung cancer could be created.
Trends in cancer incidence is a key tool to identify the pattern of cancer of any country. This retrospective study was performed to present the trends of change in cancer incidence in Nepal.The total number of cancer cases in males was 26,064 while the total number of females cancer cases was 29,867 throughout the 10 years from 2003 to 2012. The cancer incidence per 100,000 in males was 12.8 in 2003 and 25.8 people in 2012. Similarly, in females, the crude incidence rate was 15.1 in 2003 and 26.7 per 100,000 in 2012. Cancer incidence was low at early age but it was increased with age in both sexes in Nepal. Lung cancer was the most common cancer in males throughout, while it was the third most common cancer in females. Cervix uteri was the most common site of cancer in females throughout the 10 years, with a clear trend for increase in breast cancer within this time.
Background: Around half of input data in the global burden of disease cancer collaboration (GBD-CC) and GLOBOCAN projects come from low quality sources, mainly from developing countries. This may lead to loss of precision in estimates. Our question was: Are the absolute values and trends of the GBD-CC and GLOBOCAN estimates for lung cancer (LC) in Iran consistent with available statistics?. Materials and Methods: Incidence and mortality statistics were extracted from national reports (N.IRs & N.MRs) and GBD-CC (GBD-incidence & mortality) and GLOBOCAN databases for 1990-2013 where available. Trends were analyzed and absolute values and annual percentage changes (APCs) were estimated and compared. Incompleteness of case ascertainment at the Iranian national cancer registry and Iranian national civil registration was assessed for better understanding. Results: Trends of N.IRs were significantly rising for males (APC: 19.4; 95% CI: 12.5-26.7) and females (23.2; 16.0-30.8). Trends of GBD-incidence were stable for males (-0.2; -1.5-1.1) and females (-1.0; -2.3-0.4). Absolute N.IRs were less than GBD-incidence steadily except for 2009. Trend of N.MRs was increasing up to 2004, but stable thereafter. Trends of GBD-mortality were also stable. Absolute N.MRs were less than GBD-mortality for years up to 2003 and more than GBD-mortality since 2005. The estimates of GLOBOCAN were more than N.IRs and N.MRs. Conclusions: The GBD-CC and GLOBOCAN values for LC in Iran are underestimates. Generation of data quality indices to present along with country specific estimates is highly recommended.
Background: The epidemiological patterns of cancer incidence have been investigated widely in western countries. Nevertheless, information is quite limited in Jiangxi province, southern China. Materials and Methods: All data were reported by 6 population-based cancer registries in Jiangxi Province. The results were presented as incidence rates of cases by site (ICD-10), sex, crude rate (CR), age-standardized rates (ASRs) and truncated incidence rate (TR) per 100,000 person-years, using the direct method of standardization to the world population. Results: 8,765 new cancer cases were registered in our study during the period 2009-2011. Diagnosis of cancer was based on histopathology in 61.0%, clinical or radiology findings in 4.87% and death certificate only (DCO) in 3.0% of the cases. The median age at diagnosis was 62.0 years (mean, 61; standard deviation, 15). The ASRs were 170.8 per 100,000 for men and 111.2 for women. The ASRs for all invasive cancers from the urban areas (145.7 per 100,000) was higher than that of rural areas (137.1). Incidence rates for lung cancer were higher in rural (35.8) than in urban areas (27.0). Similarly, relatively high rates were observed for stomach cancer in rural (20.1) relative to urban areas (15.5). Conclusions: Our results reveal that the most common cancers were breast and lung in women and lung and liver in men. Interestingly, this study suggested a higher incidence rates for lung and stomach cancer in rural males than in urban population, which may suggest other potential causes, such as over-consumption of smoked meats and high prevalence of Helicobacter pylori infection, respectively. Public education and the promotion of healthy lifestyles should be actively carried out.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.