• Title/Summary/Keyword: Lumped model

Search Result 529, Processing Time 0.027 seconds

Dynamic response analysis of vertical pumps (입형펌프의 동적 응답해석)

  • 양보석;김원철;임우섭;권명래
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.362-372
    • /
    • 1989
  • It is important in design of vertical pumps to consider external excitation in addition to rotor vibration due to unbalance. In this study, a model of a vertical pump was developed for the analysis of its dynamic response. The vertical pump was modeled with lumped masses and springs which represent multi-cylindrical and rotor structure. A dynamic simulation program was developed and numerical calculation on the above mentioned problems were carried out.

Analytical and numerical algorithm for exploring dynamic response of non-classically damped hybrid structures

  • Raheem, Shehata E. Abdel
    • Coupled systems mechanics
    • /
    • v.3 no.2
    • /
    • pp.171-193
    • /
    • 2014
  • The dynamic characterization is important in making accurate predictions of the seismic response of the hybrid structures dominated by different damping mechanisms. Different damping characteristics arise from the construction of hybrid structure with different materials: steel for the upper part; reinforced concrete for the lower main part and interaction with supporting soil. The process of modeling damping matrices and experimental verification is challenging because damping cannot be determined via static tests as can mass and stiffness. The assumption of classical damping is not appropriate if the system to be analyzed consists of two or more parts with significantly different levels of damping. The dynamic response of structures is critically determined by the damping mechanisms, and its value is very important for the design and analysis of vibrating structures. A numerical algorithm capable of evaluating the equivalent modal damping ratio from structural components is desirable for improving seismic design. Two approaches are considered to explore the dynamic response of hybrid tower of cable-stayed bridges: The first approach makes use of a simplified model of 2 coupled lumped masses to investigate the effects of subsystems different damping, mass ratio, frequency ratio on dynamic characteristics and equivalent modal damping; the second approach employs a detailed numerical step-by step integration procedure.

Comparative assessment of seismic rehabilitation techniques on a full scale 3-story RC moment frame structure

  • Di Ludovico, M.;Balsamo, A.;Prota, A.;Manfredi, G.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.6
    • /
    • pp.727-747
    • /
    • 2008
  • In the framework of the SPEAR (Seismic PErformance Assessment and Rehabilitation) research Project, an under-designed three storey RC frame structure, designed to sustain only gravity loads, was subjected, in three different configurations 'as-built', Fiber Reinforced Polymer (FRP) retrofitted and rehabilitated by reinforced concrete (RC) jacketing, to a series of bi-directional pseudodynamic (PsD) tests under different values of peak ground acceleration (PGA) (from a minimum of 0.20g to a maximum of 0.30g). The seismic deficiencies exhibited by the 'as-built' structure after the test at PGA level of 0.20g were confirmed by a post - test assessment of the structural seismic capacity performed by a nonlinear static pushover analysis implemented on the structure lumped plasticity model. To improve the seismic performance of the 'as-built' structure', two rehabilitation interventions by using either FRP laminates or RC jacketing were designed. Assumptions for the analytical modeling, design criteria and calculation procedures along with local and global intervention measures and their installation details are herein presented and discussed. Nonlinear static pushover analyses for the assessment of the theoretical seismic capacity of the structure in each retrofitted configuration were performed and compared with the experimental outcomes.

Robust DTC Control of Doubly-Fed Induction Machines Based on Input-Output Feedback Linearization Using Recurrent Neural Networks

  • Payam, Amir Farrokh;Hashemnia, Mohammad Naser;Fai, Jawad
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.719-725
    • /
    • 2011
  • This paper describes a novel Direct Torque Control (DTC) method for adjustable speed Doubly-Fed Induction Machine (DFIM) drives which is supplied by a two-level Space Vector Modulation (SVM) voltage source inverter (DTC-SVM) in the rotor circuit. The inverter reference voltage vector is obtained by using input-output feedback linearization control and a DFIM model in the stator a-b axes reference frame with stator currents and rotor fluxes as state variables. Moreover, to make this nonlinear controller stable and robust to most varying electrical parameter uncertainties, a two layer recurrent Artificial Neural Network (ANN) is used to estimate a certain function which shows the machine lumped uncertainty. The overall system stability is proved by the Lyapunov theorem. It is shown that the torque and flux tracking errors as well as the updated weights of the ANN are uniformly ultimately bounded. Finally, effectiveness of the proposed control approach is shown by computer simulation results.

ALGEBRAIC METHOD FOR COMPUTATION OF EIGENPAIR SENSITIVITIES OF DAMPED SYSTEMS WITH REPEATED EIGENVALUES (중복근을 갖는 감쇠 시스템의 고유진동수와 모드의 고차 민감도 해석)

  • Choi, Kang-Min;Ji, Han-Rok;Yoon, Woo-Hyun;Lee, In-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.721-726
    • /
    • 2004
  • A simplified method for the computation of first second and higher order derivatives of eigenvalues and eigenvectors derivatives associated with repeated eigenvalues is presented. Adjacent eigenvectors and orthonormal conditions are used to compose an algebraic equation whose order is (n+m)x(n+m), where n is the number of coordinates and m is the number of multiplicity of the repeated eigenvalues. The algebraic equation developed can be used to compute derivatives of both eigenvalues and eigenvectors simultaneously. Since the coefficient matrix in the proposed algebraic equation is non-singular, symmetric and based on N-space it is numerically stable and very efficient compared to previous methods. This method can be consistently applied to structural systems with structural design parameters and mechanical systems with lumped design parameters. To verify the effectiveness of the proposed method, the finite element model of the cantilever beam is considered.

  • PDF

Prospects for changing in hydrological cycle components in North Korea basins by RCP8.5 climate change scenario (RCP8.5 기후변화시나리오에 따른 북한지역의 수문순환요소 변화 전망)

  • Jeung, Se Jin;Kwon, Bo Ra;Kim, Tae Hyung;Kim, Byung Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.30-30
    • /
    • 2017
  • 한반도의 기후변화는 전 세계 평균보다도 빠르게 진행되고 있다. 최근 빈발하고 있는 태풍 및 극한 강우, 폭설과 한파, 온난화 현상 등이 그 예이다. 특히 북한지역은 오랜 식량난과 에너지난으로 산림생태계가 훼손되어 홍수 및 이수와 같은 기후변화 관련 자연재해에 매우 취약하다. 이렇게 예상되는 대규모 자연재해를 대비하고 기후변화에 효율적으로 대처하기 위해서는 체계적이고 과학적인 기상 및 기후 예측 정보의 활용이 매우 중요하다. 하지만 북한지역은 우리가 수문자료를 구하기가 힘들고, 직접 측정을 할 수 없으므로 수문자료의 수집에 한계가 있기 때문에 기후변화관련 수문연구에 한계점이 있다. 따라서 본 논문에서는 WMO에서 제공하고 있는 북한의 27개 기상관측소의 강수량, 기온자료와 기상청의 RCP8.5기후변화시나리오를 제공 받아 각 관측소별 미래 잠재증발산량을 산정하였다. 또한 lumped conceptual model인 WASMOD 모형을 이용하여 북한의 대표유역(금야강, 대동강, 두만강, 압록강, 예성강, 임진강, 장연남대천)에 적용하여 부족한 수문시계열자료를 산정하였다. 이렇게 산정된 북한의 미래 수문순환요소의 시계열자료를 이용하여 통계분석, 변화점분석, 유황분석등 시계열 분석 등을 통해 RCP8.5기후변화시나리오 기반의 기후변화가 북한지역의 수문순환과정에 미치는 영향을 분석하고, 이를 통해 유역규모의 수자원에 미치는 영향을 전망하였다.

  • PDF

Development of Gas Turbine Simulation Program Based on CFD

  • Jin, Sang-Wook;Kim, Jae-Min;Kim, Kui-Soon;Choi, Jeong-Yeol;Ahn, Iee-Ki;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.150-156
    • /
    • 2008
  • A program based on a 2-D CFD code has been developed to simulate a gas turbine engine. 2-D Navier-Stokes implicit code with $k-\omega$ turbulent model is used in compressor and turbine. Lumped method chemical equilibrium code with 10 species of molecular is applied to combustor with assuming perfect mixture and 100% combustion efficiency at constant pressure state. Fluid properties are shared on interfaces between engine components. Compressor supplies outlet temperature and pressure to combustor. At the same time, combustor also carries temperature and pressure to turbine. The back pressure of compressor outlet is transferred by inlet pressure of turbine. Unsteady phenomena in rotor-stator are covered by mixing-plane method. The running condition of engine can be determined only by given the inlet condition of compressor, the outlet condition of turbine, equivalence ratio and rotating speed.

  • PDF

The Control Rod Speed Design for the Nuclear Reactor Power Control Using Optimal Control Theory (최적제어이론에 의한 원자로 제어봉속도의 설계)

  • Lee, Yoon-Joon
    • Nuclear Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.536-547
    • /
    • 1994
  • The state feedback optimal control techniques are used in designing the reactor control system. The mathematical plant model with the temperature feedback effects is established from the one delayed neutron group point kinetics equation and the singly lumped thermal-hydraulic balance equations, and is expressed in terms of state variables. The LQR (Linear Quadratic Regulator) control system is designed, being followed by the LQG (Linear Quadratic Gaussian) design to determine the optimal conditions of rod movement for the desired reactor power responses. And two different servo control schemes, the ordinary feedback system and the order increased regulating system, are proposed for the purpose of input tacking. The general control characteristics such as stability margins and output responses are discussed. Comparing each other, it is found that the order increased regulating system has far better control characteristics than the ordinary feedback system.

  • PDF

Terahertz Generation by a Resonant Photoconductive Antenna

  • Lee, Kanghee;Lee, Seong Cheol;Kim, Won Tae;Park, Jagang;Min, Bumki;Rotermund, Fabian
    • Current Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.373-379
    • /
    • 2020
  • In this study, we investigate terahertz (THz) generation by a photoconductive antenna with electrodes in the shape of split-ring resonators. According to our theoretical investigation based on a lumped-circuit model, the inductance of this electrode structure leads to resonant behavior of the photo-induced current. Hence, near the resonance frequency the spectral components generated by a resonant photoconductive antenna can be greater than those produced by a non-resonant one. For experimental verification, a resonant photoconductive antenna, which possesses a resonance mode at 0.6 THz, and a non-resonant photoconductive antenna with stripe-shaped electrodes were fabricated on a semi-insulating GaAs substrate. The THz generation by both of the photoconductive antennas demonstrated a good agreement with the theoretically expected results. The observed relationship between the resonant electrodes of the photoconductive antenna and the generated THz spectrum can be further employed to design a narrow-band THz source with an on-demand frequency.

A microstrip folded compact wideband band-pass filter with wide upper stopband

  • Hoseini, Seyyed Mojtaba Seyyed Najjar;Zaker, Reza;Monfaredi, Khalil
    • ETRI Journal
    • /
    • v.43 no.6
    • /
    • pp.957-965
    • /
    • 2021
  • A miniaturized wideband band-pass filter with a 3-dB fractional bandwidth of 109.3% (1.53 GHz to 5.22 GHz), high out-of-band attenuation greater than 25 dB, and wide upper stopband up to 14 GHz is proposed. The design consists of a dual-composite right/left handed resonator, embedded open-circuited stub, and a pair of quarter-wavelength short-circuited stubs. These elements are coupled in the near distance to form a miniature filter with a compact occupied area of 0.21 λg×0.19 λg (≈ 0.013 cm2). The optimized filter has multitransmission poles in the passband, substantially improving the return loss and insertion loss characteristics. The behavior of the passband and stopband is verified against the results of a lumped element model and matrix analysis with a full-wave moment-based analysis and actual measurements. The results of this verification and a comparison with the performance of filters in other references indicate that the proposed filter is very efficient and applicable to compact microwave systems.