• Title/Summary/Keyword: Lumped hydrological model

Search Result 24, Processing Time 0.025 seconds

Parameter and Modeling Uncertainty Analysis of Semi-Distributed Hydrological Model using Markov-Chain Monte Carlo Technique (Markov-Chain Monte Carlo 기법을 이용한 준 분포형 수문모형의 매개변수 및 모형 불확실성 분석)

  • Choi, Jeonghyeon;Jang, Suhyung;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.5
    • /
    • pp.373-384
    • /
    • 2020
  • Hydrological models are based on a combination of parameters that describe the hydrological characteristics and processes within a watershed. For this reason, the model performance and accuracy are highly dependent on the parameters. However, model uncertainties caused by parameters with stochastic characteristics need to be considered. As a follow-up to the study conducted by Choi et al (2020), who developed a relatively simple semi-distributed hydrological model, we propose a tool to estimate the posterior distribution of model parameters using the Metropolis-Hastings algorithm, a type of Markov-Chain Monte Carlo technique, and analyze the uncertainty of model parameters and simulated stream flow. In addition, the uncertainty caused by the parameters of each version is investigated using the lumped and semi-distributed versions of the applied model to the Hapcheon Dam watershed. The results suggest that the uncertainty of the semi-distributed model parameters was relatively higher than that of the lumped model parameters because the spatial variability of input data such as geomorphological and hydrometeorological parameters was inherent to the posterior distribution of the semi-distributed model parameters. Meanwhile, no significant difference existed between the two models in terms of uncertainty of the simulation outputs. The statistical goodness of fit of the simulated stream flows against the observed stream flows showed satisfactory reliability in both the semi-distributed and the lumped models, but the seasonality of the stream flow was reproduced relatively better by the distributed model.

Flood Runoff Analysis of Multi-purpose Dam Watersheds in the Han River Basin using a Grid-based Rainfall-Runoff Model (격자기반의 강우유출모형을 통한 한강수계 다목적댐의 홍수유출해석)

  • Park, In-Hyeok;Park, Jin-Hyeog;Hur, Young-Teck
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.5
    • /
    • pp.587-596
    • /
    • 2011
  • The interest in hydrological modeling has increased significantly recently due to the necessity of watershed management, specifically in regards to lumped models, which are being prosperously utilized because of their relatively uncomplicated algorithms which require less simulation time. However, lumped models require empirical coefficients for hydrological analyses, which do not take into consideration the heterogeneity of site-specific characteristics. To overcome such obstacles, a distributed model was offered as an alternative and the number of researches related to watershed management and distributed models has been steadily increasing in the recent years. Thus, in this study, the feasibility of a grid-based rainfall-runoff model was reviewed using the flood runoff process in the Han River basin, including the ChungjuDam, HoengseongDam and SoyangDam watersheds. Hydrological parameters based on GIS/RS were extracted from basic GIS data such as DEM, land cover, soil map and rainfall depth. The accuracy of the runoff analysis for the model application was evaluated using EFF, NRMSE and QER. The calculation results showed that there was a good agreement with the observed data. Besides the ungauged spatial characteristics in the SoyangDam watershed, EFF showed a good result of 0.859.

Development of lumped model to analyze the hydrological effects landuse change (토지이용 변화에 따른 수문 특성의 변화를 추적하기 위한 Lumped모형의 개발)

  • Son, Ill
    • Journal of the Korean Geographical Society
    • /
    • v.29 no.3
    • /
    • pp.233-252
    • /
    • 1994
  • One of major advantages of Lumped model is its ability to simulate extended flows. A further advantage is that it requires only conventional, readily available hydrological data (rainfall, evaporation and runoff). These two advantages commend the use of this type of model for the analysis of the hydrological effects of landuse change. Experimental Catchment(K11) of Kimakia site in Kenga experienced three phases of landuse change for sixteen and half years. The Institute of Hydrology offered the hydrological data from the catchment for this research. On basis of Blackie's(l972) 9-parameter model, a new model(R1131) was reorganized in consideration of the following aspects to reflect the hydrological characteristics of the catchment: 1) The evapotranspiration necessary for the landuse hydrology, 2) high permeable soils, 3) small catchment, 4) input option for initial soil moisture deficit, and 5) othel modules for water budget analysis. The new model is constructed as a 11-parameter, 3-storage, 1-input option model. Using a number of initial conditions, the model was optimized to the data of three landuse phases. The model efficiencies were 96.78%, 97.20%, 94.62% and the errors of total flow were -1.78%, -3.36%, -5.32%. The bias of the optimized models were tested by several techniques, The extended flows were simulated in the prediction mode using the optimized model and the data set of the whole series of experimental periods. They are used to analyse the change of daily high and low-flow caused by landuse change. The relative water use ratio of the clearing and seedling phase was 60.21%, but that of the next two phases were 81.23% and 83.78% respectively. The annual peak flows of second and third phase at a 1.5-year return period were decreased by 31.3% and 31.2% compared to that of the first phase. The annual peak flow at a 50-year return period in the second phase was an increase of only 4.8%, and that in the third phase was an increase of 12.9%. The annual minimum flow at a 1.5-year return period was decreased by 34.2% in the second phase, and 34.3% in the third phase. The changes in the annual minimum flows were decreased for the larger return periods; a 20.2% decrease in the second phase and 20.9% decrease in the third phase at a 50-year return period. From the results above, two aspects could be concluded. Firstly, the flow regime in Catchment K11 was changed due to the landuse conversion from the clearing and seedling phade to the intermediate stage of pine plantation. But, The flow regime was little affected after the pine trees reached a certain height. Secondly, the effects of the pine plantation on the daily high- and low-flow were reduced with the increase in flood size and the severity of drought.

  • PDF

Low-flow simulation and forecasting for efficient water management: case-study of the Seolmacheon Catchment, Korea

  • Birhanu, Dereje;Kim, Hyeon Jun;Jang, Cheol Hee;ParkYu, Sanghyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.243-243
    • /
    • 2015
  • Low-flow simulation and forecasting is one of the emerging issues in hydrology due to the increasing demand of water in dry periods. Even though low-flow simulation and forecasting remains a difficult issue for hydrologists better simulation and earlier prediction of low flows are crucial for efficient water management. The UN has never stated that South Korea is in a water shortage. However, a recent study by MOLIT indicates that Korea will probably lack water by 4.3 billion m3 in 2020 due to several factors, including land cover and climate change impacts. The two main situations that generate low-flow events are an extended dry period (summer low-flow) and an extended period of low temperature (winter low-flow). This situation demands the hydrologists to concentrate more on low-flow hydrology. Korea's annual average precipitation is about 127.6 billion m3 where runoff into rivers and losses accounts 57% and 43% respectively and from 57% runoff discharge to the ocean is accounts 31% and total water use is about 26%. So, saving 6% of the runoff will solve the water shortage problem mentioned above. The main objective of this study is to present the hydrological modelling approach for low-flow simulation and forecasting using a model that have a capacity to represent the real hydrological behavior of the catchment and to address the water management of summer as well as winter low-flow. Two lumped hydrological models (GR4J and CAT) will be applied to calibrate and simulate the streamflow. The models will be applied to Seolmacheon catchment using daily streamflow data at Jeonjeokbigyo station, and the Nash-Sutcliffe efficiencies will be calculated to check the model performance. The expected result will be summarized in a different ways so as to provide decision makers with the probabilistic forecasts and the associated risks of low flows. Finally, the results will be presented and the capacity of the models to provide useful information for efficient water management practice will be discussed.

  • PDF

Development of the daily runoff simulation model (일유출량 모의 모형의 개발)

  • Kim, Yang-Su;Seo, Byung-Ha;Kang, Kwan-Weon
    • Water for future
    • /
    • v.22 no.3
    • /
    • pp.307-313
    • /
    • 1989
  • This study is aimed to develop a long-term daily runoff simulation model. The model is theoretically constructed and is applied to the practical problems to verify its reasonableness. A lumped, nonlinear model is proposed and is calibrated as quasilinearization procedures. The hydrological data used in the paper are precipitation, runoff, and evaporation records in the Bochong Stream which is one of the tributaries of the Geum River.

  • PDF

Conceptual eco-hydrological model reflecting the interaction of climate-soil-vegetation-groundwater table in humid regions (습윤 지역의 기후-토양-식생-지하수위 상호작용을 반영한 개념적인 생태 수문 모형)

  • Choi, Jeonghyeon;Kim, Sangdan
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.9
    • /
    • pp.681-692
    • /
    • 2021
  • Vegetation processes have a significant impact on rainfall runoff processes through evapotranspiration control, but are rarely considered in the conceptual lumped hydrological model. This study evaluated the model performance of the Hapcheon Dam watershed by integrating the ecological module expressing the leaf area index data sensed remotely from the satellite into the hydrological partition module. The proposed eco-hydrological model has three main features to better represent the eco-hydrological process in humid regions. 1) The growth rate of vegetation is constrained by water shortage stress in the watershed. 2) The maximum growth of vegetation is limited by the energy of the watershed climate. 3) The interaction of vegetation and aquifers is reflected. The proposed model simultaneously simulates hydrologic components and vegetation dynamics of watershed scale. The following findings were found from the validation results using the model parameters estimated by the SCEM algorithm. 1) Estimating the parameters of the eco-hydrological model using the leaf area index and streamflow data can predict the streamflow with similar accuracy and robustness to the hydrological model without the ecological module. 2) Using the remotely sensed leaf area index without filtering as input data is not helpful in estimating streamflow. 3) The integrated eco-hydrological model can provide an excellent estimate of the seasonal variability of the leaf area index.

The Selection of Optimal Distributions for Distributed Hydrological Models using Multi-criteria Calibration Techniques (다중최적화기법을 이용한 분포형 수문모형의 최적 분포형 선택)

  • Kim, Yonsoo;Kim, Taegyun
    • Journal of Wetlands Research
    • /
    • v.22 no.1
    • /
    • pp.15-23
    • /
    • 2020
  • The purpose of this study is to investigate how the degree of distribution influences the calibration of snow and runoff in distributed hydrological models using a multi-criteria calibration method. The Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM) developed by NOAA-National Weather Service (NWS) is employed to estimate optimized parameter sets. We have 3 scenarios depended on the model complexity for estimating best parameter sets: Lumped, Semi-Distributed, and Fully-Distributed. For the case study, the Durango River Basin, Colorado is selected as a study basin to consider both snow and water balance components. This study basin is in the mountainous western U.S. area and consists of 108 Hydrologic Rainfall Analysis Project (HRAP) grid cells. 5 and 13 parameters of snow and water balance models are calibrated with the Multi-Objective Shuffled Complex Evolution Metropolis (MOSCEM) algorithm. Model calibration and validation are conducted on 4km HRAP grids with 5 years (2001-2005) meteorological data and observations. Through case study, we show that snow and streamflow simulations are improved with multiple criteria calibrations without considering model complexity. In particular, we confirm that semi- and fully distributed models are better performances than those of lumped model. In case of lumped model, the Root Mean Square Error (RMSE) values improve by 35% on snow average and 42% on runoff from a priori parameter set through multi-criteria calibrations. On the other hand, the RMSE values are improved by 40% and 43% for snow and runoff on semi- and fully-distributed models.

Modification of Spatial Grid Based Distributed Model Considering River Basin Characteristics (유역특성을 반영한 공간격자기반의 분포형모형 개선)

  • Park, Jin Hyeog;Hur, Young Teck
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3D
    • /
    • pp.431-436
    • /
    • 2008
  • Recently, the rapid development of GIS technology has made it possible to handle a various data associated with spatially hydrological parameters with their attribute information. Therefore, there has been a shift in focus from lumped runoff models to distributed runoff models, as the latter can consider temporal and spatial variations of discharge. In this research, a distributed rainfall-runoff model based on physical kinematic wave for analysis of surface and river flow was used to simulate temporal and spatial distribution of long-term discharge. The snowfall and melting process model based on Hydro-BEAM was developed, and various hydrological parameters for input data of the model was extracted from basic GIS data such as DEM, land cover and soil map. The developed model was applied for the Shonai River basin(532) in Japan, which has sufficient meteorological and hydrological data, and displayed precise runoff results to be compared to the hydrograph.

Prediction of Reservoir Water Level using CAT (CAT을 이용한 저수지 수위 예측)

  • Jang, Cheol-Hee;Kim, Hyeon-Jun;Kim, Jin-Taek
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.1
    • /
    • pp.27-38
    • /
    • 2012
  • This study is to analyse the hydrological behavior of agricultural reservoir using CAT (Catchment hydrologic cycle Assessment Tool). The CAT is a water cycle analysis model in order to quantitatively assess the characteristics of the short/long-term changes in watershed. It supports the effective design of water cycle improvement facilities by supplementing the strengths and weaknesses of existing conceptual parameter-based lumped hydrologic models and physical parameter-based distributed hydrologic models. The CAT especially supports the analysis of runoff processes in paddy fields and reservoirs. To evaluate the impact of agricultural reservoir operation and irrigation water supply on long-term rainfall-runoff process, the CAT was applied to Idong experimental catchment, operated for research on the rural catchment characteristics and accumulated long term data by hydrological observation equipments since 2000. From the results of the main control points, Idong, Yongdeok and Misan reservoirs, the daily water levels of those points are consistent well with observed water levels, and the Nash-Sutcliffe model efficiencies were 0.32~0.89 (2001~2007) and correlation coefficients were 0.73~0.98.

Combining Four Elements of Precipitation Loss in a Watershed (유역내 네가지 강수손실 성분들의 합성)

  • Yoo, Ju-Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.200-204
    • /
    • 2012
  • In engineering hydrology, an estimation of precipitation loss is one of the most important issues for successful modeling to forecast flooding or evaluate water resources for both surface and subsurface flows in a watershed. An accurate estimation of precipitation loss is required for successful implementation of rainfall-runoff models. Precipitation loss or hydrological abstraction may be defined as the portion of the precipitation that does not contribute to the direct runoff. It may consist of several loss elements or abstractions of precipitation such as infiltration, depression storage, evaporation or evapotranspiration, and interception. A composite loss rate model that combines four loss rates over time is derived as a lumped form of a continuous time function for a storm event. The composite loss rate model developed is an exponential model similar to Horton's infiltration model, but its parameters have different meanings. In this model, the initial loss rate is related to antecedent precipitation amounts prior to a storm event, and the decay factor of the loss rate is a composite decay of four losses.

  • PDF