• 제목/요약/키워드: Luminous efficient

검색결과 72건 처리시간 0.03초

Synthesis and Characterization of 9,9'-Diethyl-2-diphenylaminofluorene Derivatives as Blue Fluorescent Materials for OLEDs

  • Oh, Suh-Yun;Lee, Kum-Hee;Seo, Ji-Hoon;Kim, Young-Kwan;Yoon, Seung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권5호
    • /
    • pp.1593-1598
    • /
    • 2011
  • Blue fluorescent materials based on 9,9'-diethyl-2-diphenylaminofluorene derivatives were synthesized and characterized. These materials were used as the blue dopant materials for the emitting layer of organic light-emitting diode devices with the following device structure: ITO/DNTPD (40 nm)/NPB (20 nm)/MADN: dopants (2%, 20 nm)/$Alq_3$ (40 nm)/Liq (1.0 nm)/Al. All devices exhibited highly efficient blue emission. One of these devices exhibited a maximum luminance, luminous efficiency, power efficiency and CIE x, y coordinates of 8400 $cd/m^2$, 8.10 cd/A at 20 $mA/cm^2$, 3.36 lm/W at 20 $mA/cm^2$ and (0.151, 0.159), respectively. A deep blue device with CIE coordinates of (0.152, 0.139) showed the maximum luminance, luminous efficiency and power efficiency of 8630 $cd/m^2$, 6.31 cd/A at 20$mA/cm^2$ and 2.62 lm/W at 20 $mA/cm^2$, respectively.

A gas display device with electron emitter

  • Son, Seung-Hyun;Nam, Mun-Ho;Kim, Jung-Min;Cho, Sung-Hee;Jang, Sang-Hun;Kim, Gi-Young;Han, In-Su;Kim, Dae-Hyun;Cho, Young-Mi;Kim, Chang-Wook;Park, Hyoung-Bin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권2호
    • /
    • pp.1253-1256
    • /
    • 2007
  • A display device combining plasma display panel (PDP) and field emission display (FED) is proposed to achieve high luminous efficiency. The device can avoid the main energy loss channels of both PDP (ion loss) and FED (low CL efficiency). $2{\sim}6$”-diagonal test panels with carbon nano-tube (CNT) electron emitter and Xenon ambient gas showed the luminous efficiency of 4.14lm/W and brightness of $263cd/m^2$ at 35V (1kHz, 1% duty), indicating that it is a good candidate for the low voltage driven, highly efficient next generation display.

  • PDF

Flexible Organic Light-Emitting Diodes Using Modified Graphene Anodes

  • 한태희;이영빈;최미리;우성훈;배상훈;홍병희;안종현;이태우
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.69.2-69.2
    • /
    • 2012
  • Graphene films have a strong potential to replace indium tin oxide anodes in organic light-emitting diodes (OLEDs), to date. However, the luminous efficiency of OLEDs with graphene anodes has been limited by a lack of efficient methods to improve the low work function and reduce the sheet resistance of graphene films to the levels required for electrodes. Here, we fabricate flexible OLEDs by modifying the graphene anode to have a high work function and low sheet resistance, and thus achieve extremely high luminous power efficiencies (37.2 lm/W in fluorescent OLEDs, 102.7 lm/W in phosphorescent OLEDs), which are significantly higher than those of optimized devices with an indium tin oxide anode (24.1 lm/W in fluorescent OLEDs, 85.6 lm/W in phosphorescent OLEDs). We also fabricate flexible white OLED lighting devices using the graphene anode. These results demonstrate the great potential of graphene anodes for use in a wide variety of high-performance flexible organic optoelectronics.

  • PDF

피라졸 유도체를 함유한 폴리알킬플루오렌 공중합체의 향상된 EL 특성 (Highly Enhanced EL Properties of PF Copolymers with Pyrazole Derivatives)

  • 강인남;이지훈
    • 한국전기전자재료학회논문지
    • /
    • 제23권7호
    • /
    • pp.539-544
    • /
    • 2010
  • We have synthesized new blue electroluminescent polyalkylfluorene-based copolymers [poly(F-co-Py)x:y, where x:y = 99:1 or 95:5 mole ratios] containing the hole-injecting pyrazole derivative [3,3'-(4,6-bis(octyloxy)-1,3-phenylene)bis(1,5-diphenyl-4,5-dihydro-1H-pyrazole] through Ni(0) mediated polymerization, and their electroluminescent properties were investigated. Electroluminescent (EL) devices were fabricated with ITO / PEDOT:PSS (110 nm) / copolymers or PF homopolymer (80 nm) / Ca (50 nm) / Al (200 nm) configuration. Each EL device constructed from the copolymer exhibited significantly enhanced brightness and efficiency compared with a device constructed from the PF homopolymer. The EL device constructed with poly(F-co-Py)99:1 exhibited the highest luminous efficiency and brightness (0.95 cd/A and $2,907\;cd/m^2$, respectively). The achieved luminous efficiency was an excellent result, providing almost a 4-fold improvement on the efficiency obtainable with the a PF homopolymer device. This enhanced efficiency of the copolymer devices results from their improved hole injection and more efficient charge carrier balance, which arises from the HOMO level (~5.83 eV) of the poly(F-co-Py)99:1 copolymer, which is higher than that of the PF homopolyme (~5.90 eV).

Efficient White Organic Light-emitting Device by utilizing a Blue-emitter Doped with a Red Fluorescent Dopant

  • Lim, Jong-Tae;Ahn, Young-Joo;Kang, Gi-Wook;Lee, Nam-Heon;Lee, Mun-Jae;Kang, Hee-Young;Lee, Chang-Hee;Ko, Young-Wook;Lee, Jin-Ho
    • Journal of Information Display
    • /
    • 제4권2호
    • /
    • pp.13-18
    • /
    • 2003
  • We synthesized bis (2-methyl-8-quinolinolato)(triphenylsiloxy) aluminum (III) (SAlq), a blue-emitting material having a high luminous efficiency, through a homogeneous-phase reaction. The photoluminescence (PL) and electroluminescence (EL) spectra of SAlq show two peaks at 454 nm and 477 nm. Efficient white light-emitting devices are fabricated by doping SAlq with a red fluorescent dye of 4-dicyanomethylene-2-methyl-6-{2-(2,3,6,7-tetrahydro-1H,5H-benzo[i,j]quinolizin-8yl) vinyl}-4H-pyran (DCM2). The incomplete energy transfer from blue-emitting SAlq to red-emitting DCM2 results in light-emission of both blue and orange colors. Devices with the structure of ITO/TPD (50 nm)/SAlq:DCM2 (30 nm, 0.5 %)/$Alq_3$ (20 nm)/LiF (0.5 nmj/Al show EL peaks at 456 nm and 482 nm originating from SAlq and at 570 nm from DCM2, resulting in the Commission Internationale d'Eclairage (CIE) chromaticity coordinates of (0.32, 0.37). The device exhibits an external quantum efficiency of about 2.3 % and a luminous efficiency of about 2.41m/W at 100 $cd/m^2$. A maximum luminance of about 23,800 $cd/m^2$ is obtained at the bias voltage of 15 V.

Highly Efficient Blue Organic Light-emitting Devices Based on Copper Phthalocyanine/Aromatic Diamine Composite Hole Transport Layer

  • Liao, Chi Hung;Tsai, Chih Hung;Chen, Chin H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.724-726
    • /
    • 2004
  • Highly efficient blue organic light-emitting devices (OLEDs) utilizing the idea of copper phthalocyanine (CuPc)/N,N'-bis-(1-naphthyl)-N,N'-diphenyl,1,1'-biphenyl- 4,4'-diamine (NPB) composite hole transport layer (CPHTL) have been fabricated. The effect of inserting CPHTL upon the performance of blue OLEDs with 2-methyl-9,10-di(2-naphthyl)anthracene (MADN) as the blue emitter has been investigated. Compared with the luminous efficiency of the standard blue device without CPHTL (1.33 cd/A), that of the device with 40:60 CuPc/NPB CPHTL has been increased by more than twice up to 2.96 cd/A with a Commission Internationale d'Eclairage (CIE) coordinates of(x = 0.15, y = 0.10) and a power efficiency of 1.46 lm/W (20 mA/$cm^2$) at 6.39 V. The increased device efficiency is attributed to an improved balance between hole and electron currents arriving at the recombination zone.

  • PDF

전기인광을 이용한 고효율 적색 유기 전기발광소자 (Efficient red organic light-emitting devices based on electrophosphorescence)

  • 송원준;강기욱;박수연;설창;이창희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 춘계학술대회 논문집 디스플레이 광소자 분야
    • /
    • pp.121-124
    • /
    • 2000
  • Achieving red light-emitting diodes with high quantum and luminous efficiency is required to fabricate the full-color organic electroluminescence display. In this work, we report that devices with 2.3,7,8,12,13,17,18-Octaethyl-21H,23H-porphine palladium (II) (PdOEP), doped into tris(8-Hydroxyquinolinato)-aluminum (III) (Alq3) show a narrow deep red emission (670nm). In addition, PdOEP has been used as host material in which red dyes such as 4-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM) doped in order to fabricate efficient red-emitting diodes.

  • PDF

블라인드 PV 제어에 따른 실내 빛환경 및 발전량 측정 (A Measurement of Luminous Environment and Power Generation according to Control Methods of Blind PV)

  • 김소현;손아롬;김인태;최안섭
    • 조명전기설비학회논문지
    • /
    • 제27권2호
    • /
    • pp.14-21
    • /
    • 2013
  • Today, energy problem has become an important issue, and a development of renewable energy is urgent. In architectural fields, a research of the energy efficient lighting system using renewable energy is in progress. The energy efficient lighting system could be realized by integrating a daylight responsive LED lighting control system and a blind PV system. This system is able to save and generate electric energy. Efficiency of this system depends on control methods of blind PV. As a preliminary research, this research analyzed power generation and inflow of available daylight according to control method of blind PV.

High efficiency and long lifetime green OLED with a new electron transport material and a three-component RGB white OLED for full-color display applications.

  • Tokairin, Hiroshi;Kuma, Hitoshi;Yamamoto, Hiroshi;Funahashi, Masakazu;Fukuoka, Kenichi;Hosokawa, Chishio
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1138-1142
    • /
    • 2005
  • We achieved a highly efficient green OLED with an efficiency of 30cd/A by using a new electron transport material and optimizing the device structure. The luminous efficiency was 16.8lm/W at $3000cd/m^2$ and the lifetime was over 60,000hr at an initial luminance of $1000cd/m^2$. Furthermore, we obtained a threecomponent RGB white OLED by using the highly efficient green material. This RGB white OLED shows more excellent color reproducibility for full color displays with color filters, compared to a twocomponent white OLED.

  • PDF

Efficient White Organic Electroluminescent Devices Consisting of Two Emitting Layers of Blue and Orange Colors

  • Lee, Nam-Heon;Lee, Mun-Jae;Song, Jun-Ho;Lee, Chang-Hee;Kwon, Soon-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.944-947
    • /
    • 2003
  • We report efficient white organic electroluminescent devices consisting of a blue-emitting layer of 9,10-bis[(2",7"-di-t-butyl)-9',9"-spirobifluorenyl]anthracene (TBSA) and a red-emitting layer of 4-dicyanomethylene-2-methyl-6-[2-(2,3,6,7-tetrahydro-1H,5H-benzo[i,j]quinolizin-8-yl)vinyl]-4H-pyran) (DCM2) doped into 4,4'bis[N-(1-napthyl)-N-phenyl-amino]-biphenyl (${\alpha}-NPD$). The device shows the CIE coordinates of (0.32, 0.37). The external quantum efficiency is about 3.4 % and the luminous efficiency is about 3.9 lm/W at luminance of 100 $cd/m^{2}$. The maximum luminance is about 45,400 $cd/m^{2}$ at 11.5 V.

  • PDF