• Title/Summary/Keyword: Luciferase

Search Result 606, Processing Time 0.027 seconds

MiR-26a promotes apoptosis of porcine granulosa cells by targeting the 3β-hydroxysteroid-Δ24-reductase gene

  • Zhang, Xiaodong;Tao, Qiangqiang;Shang, Jinnan;Xu, Yiliang;Zhang, Liang;Ma, Yingchun;Zhu, Weihua;Yang, Min;Ding, Yueyun;Yin, Zongjun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.4
    • /
    • pp.547-555
    • /
    • 2020
  • Objective: Apoptosis of ovarian granulosa cells (GCs) affects mammalian follicular development and fecundity. This study aimed to explore the regulatory relationship between microRNA-26a (miR-26a) and the 3β-hydroxysteroid-Δ24-reductase gene (DHCR24) gene in porcine follicular granular cells (pGCs), and to provide empirical data for the development of methods to improve the reproductive capacity of pigs. Methods: The pGCs were transfected with miR-26a mimic, miR-26a inhibitor and DHCR24-siRNA in vitro. The cell apoptosis rate of pGCs was detected by the flow cytometry. The secretion levels of estradiol (E2) and progesterone (P) in pGCs were detected by enzyme-linked immunosorbent assay. Double luciferase validation system was used to detect the binding sites between miR-26a and DHCR24 3'-UTR region. Qualitative real-time polymerase chain reaction and Western blotting were used to verify the DHCR24 mRNA and protein expression in pGCs, respectively, after transfecting with miR-26a mimic and miR-26a inhibitor. Results: Results showed that enhancement of miR-26a promoted apoptosis, and inhibited E2 and P secretion in pGCs. Meanwhile, inhibition of DHCR24 also upregulated the Caspase-3 expression, reduced the BCL-2 expression, promoted pGCs apoptosis, and inhibited E2 and P secretion in pGCs. There were the binding sites of miR-26a located within DHCR24 3'-UTR. Up-regulation of miR-26a inhibited DHCR24 mRNA and protein expression in pGCs. Conclusion: This study demonstrates that miR-26a can promote cell apoptosis and inhibit E2 and P secretion by inhibiting the expression of DHCR24 in pGCs.

ZNF424, a novel human KRAB/C2H2 zinc finger protein, suppresses NFAT and p21 pathway

  • Wang, Yuequn;Zhou, Junnei;Ye, Xiangli;Wan, Yongqi;Li, Youngqing;Mo, Xiaoyan;Yuan, Wuzhou;Yan, Yan;Luo, Na;Wang, Zequn;Fan, Xiongwei;Deng, Yun;Wu, Xiushan
    • BMB Reports
    • /
    • v.43 no.3
    • /
    • pp.212-218
    • /
    • 2010
  • Zinc finger-containing transcription factors are the largest single family of transcriptional regulators in mammals, which play an essential role in cell differentiation, cell proliferation, apoptosis, and neoplastic transformation. Here we have cloned a novel KRAB-related zinc finger gene, ZNF424, encoding a protein of 555aa. ZNF424 gene consisted of 4 exons and 3 introns, and mapped to chromosome 19p13.3. ZNF424 gene was ubiquitously expressed in human embryo tissues by Northern blot analysis. ZNF424 is conserved across species in evolution. Using a GFP-labeled ZNF424 protein, we demonstrate that ZNF424 localizes mostly in the nucleus. Transcriptional activity assays shows ZNF424 suppresses transcriptional activity of L8G5-luciferase. Overexpression of ZNF424 in HEK-293 cells inhibited the transcriptional activity of NFAT and p21, which may be silenced by siRNA. The results suggest that ZNF424 protein may act as a transcriptional repressor that suppresses NFAT and p21 pathway to mediate cellular functions.

Demethylation of CpG islands in the 5' upstream regions mediates the expression of the human testis-specific gene MAGEB16 and its mouse homolog Mageb16

  • Liu, Yunqiang;Wang, Meiling;Jiang, Siyuan;Lu, Yongjie;Tao, Dachang;Yang, Yuan;Ma, Yongxin;Zhang, Sizhong
    • BMB Reports
    • /
    • v.47 no.2
    • /
    • pp.86-91
    • /
    • 2014
  • Tissue-specific gene expression is regulated by epigenetic modification involving trans-acting factors. Here, we identified that the human MAGEB16 gene and its mouse homolog, Mageb16, are only expressed in the testis. To investigate the mechanism governing their expression, the promoter methylation status of these genes was examined in different samples. Two CpG islands (CGIs) in the 5' upstream region of MAGEB16 were highly demethylated in human testes, whereas they were methylated in cells without MAGEB16 expression. Similarly, the CGI in Mageb16 was hypomethylated in mouse testes but hypermethylated in other tissues and cells without Mageb16 expression. Additionally, the expression of these genes could be activated by treatment with the demethylation agent 5'-aza-2'-deoxycytidine (5'-aza-CdR). Luciferase assays revealed that both gene promoter activities were inhibited by methylation of the CGI regions. Therefore, we propose that the testis-specific expression of MAGEB16 and Mageb16 is regulated by the methylation status of their promoter regions.

A Study the Effects of Three Preparations of Hirudo on the Expression of Pro-inflammatory Cytokines in Human Bronchial Epithelial Cells Line BEAS-2B (수질(水蛭)의 제법(制法)에 따른 BEAS-2B 인간(人間) 기관지상피세포(氣管支上皮細胞)의 염증유발성(炎症誘發性) Cytokines 발현(發顯)에 미치는 영향(影響))

  • Jung, Hee-Jae;Jung, Sung-Ki;Rhee, Hyung-Koo;Han, Dong-Ha
    • The Journal of Internal Korean Medicine
    • /
    • v.25 no.4
    • /
    • pp.260-273
    • /
    • 2004
  • Backgrounds : In recent years, asthma has become recognized as a chronic inflammatory disease associated pathologically with airway epithelial inflammation and airway remodeling. Objectives : To evaluate the different effects of Hirudo depending upon pharmaceutical manufactures on the expression and the activities of IL-6 and GM-CSF in airway epithelial cells, samples of Hirudo(水蛭), Hirudo toasted with Talcum(水蛭滑石炒) and Hirudo toasted with Ephedrae Herba(水蛭麻黃炒) were tested. Methods : After inducing enhanced messenger RNA(mRNA) expression and secretion of each cytokine by tumor necrosis factor-alpha(10 ng/ml) treatment, cultured human bronchial epithelial cell line BEAS-2B was added to each sample$(l,\;10,\;100\;&\;1000\;{\mu}g/ml)$. Subsequently, DNA activities were analyzed. Specifically mRNA expression and culture supernatants(protein levels) of IL-6 and GM-CSF from BEAS-2B cells, were analyzed using luciferase reporter gene assay, reverse transcription-polymerase chain reaction(RT-PCR) analysis and enzyme-linked immunosorbent assay. Results : Hirudo toasted with Ephedrae Herba(水蛭麻黃炒) and Hirudo(水蛭) inhibited IL-6 activities in BEAS-2B cells remarkably, and inhibited mRNA expression levels and protein levels in supernatant of IL-6 and GM-CSF at various concentrations, significantly(p<0.05). However, Hirudo toasted with Talcum(水蛭滑石炒) had no effect on mRNA expression levels and showed a slight inhibitory effect on GM-CSF protein levels in supernatant of culture medium. Conclusions : These results strongly suggest that Hirudo toasted with Ephedrae Herba(水蛭麻黃炒) and Hirudo(水蛭) would be serve as effective medicaments in the treatment of airway inflammation and remodeling of asthmatic patients.

  • PDF

Mapping of Human Cytomegalovirus IE1 Responsive Elements in the c-jun Promoter (사람세포거대바이러스 (Human Cytomegalovirus)의 극초기항원-1 (Immediate Early-1, IE-1)에 반응하는 c-jun Promoter의 유전자 지도 분석)

  • Park, Chung-Gyu;Han, Tae-Hee;Kim, Dae-Joong;Kim, Jin-Hee;Hwang, Eung-Soo;Choi, Sung-Bae;Cha, Chang-Yong
    • The Journal of Korean Society of Virology
    • /
    • v.28 no.3
    • /
    • pp.267-274
    • /
    • 1998
  • Human cytomegalovirus (HCMV) has the ability to activate the expression of many viral and cellular genes. Among various viral proteins, the immediate early proteins (IE1-72kDa, IE2-86kDa) have been known to be potent transactivators. The product of c-jun proto-oncogene is important in cell activation and differentiation. Here, we tried to find out if the IE could activate the c-jun promoter and also tried to identify the responsible sequence elements in the c-jun activation by IE1-72kDa. We found HCMV IE expression transactivated the c-jun promoter in human embryonal lung fibroblasts (HEL). The activation fold by IE1-72kDa, IE2-86kDa and IE2-55kDa was 23, 35, and 5, respectively. When the expression of each IE was combined, it showed synergism. Expression of (IE1-72kDa + IE2-86kDa) and (IE1-72kDa + IE2-86kDa + IE2-55kDa) resulted in 131 and 162 fold increase, respectively. The c-jun promoter region between -117 and -59 contains binding sites for the transcription factors Spl, CAAT, AP-l like (ATF/CREB), and MEF2. Transient expression assays were performed using various reporter plasmids containing the c-jun promoter-regulatory region linked to the luciferase gene and a plasmid expressing HCMV IE1 gene. Deletional and point mutational analysis showed that the sequence between -225 to -160 and the CTF binding site were involved in the up-regulation of c-jun promoter.

  • PDF

Inhibitory Effects of Coptis japonica Alkaloids on the LPS-Induced Activation of BV2 Microglial Cells

  • Jeon, Se-Jin;Kwon, Kyung-Ja;Shin, Sun-Mi;Lee, Sung-Hoon;Rhee, So-Young;Han, Seol-Heui;Lee, Jong-Min;Kim, Han-Young;Cheong, Jae-Hoon;Ryu, Jong-Hoon;Min, Byung-Sun;Ko, Kwang-Ho;Shin, Chan-Young
    • Biomolecules & Therapeutics
    • /
    • v.17 no.1
    • /
    • pp.70-78
    • /
    • 2009
  • Coptis japonica (C. japonica) is a perennial medicinal plant that has anti-inflammatory activity. C. japonica contains numerous biologically active alkaloids including berberine, palmatine, epi-berberine, and coptisine. The most well-known anti-inflammatory principal in C. japonica is berberine. For example, berberine has been implicated in the inhibition of iNOS induction by cytokines in microglial cells. However, the efficacies of other alkaloids components on microglial activation were not investigated yet. In this study, we investigated the effects of three alkaloids (palmatine, epi-berberine and coptisine) from C. japonica on lipopolysaccharide (LPS)-induced microglial activation. BV2 microglial cells were immunostimulated with LPS and then the production of several inflammatory mediators such as nitric oxide (NO), reactive oxygen species (ROS) and matrix metalloproteinase-9 (MMP-9) were examined as well as the phosphorylation status of Erk1/2 mitogen activated protein kinase (MAPK). Palmatine and to a lesser extent epi-berberine and coptisine, significantly reduced the release of NO, which was mediated by the inhibition of LPS-stimulated mRNA and protein induction of inducible nitric oxide synthase (iNOS) from BV2 microglia. In addition to NO, palmatine inhibited MMP-9 enzymatic activity and mRNA induction by LPS. Palmatine also inhibited the increase in the LPS-induced MMP-9 promoter activity determined by MMP-9 promoter luciferase reporter assay. LPS stimulation increased Erk1/2 phosphorylation in BV2 cells and these alkaloids inhibited the LPS-induced phosphorylation of Erk1/2. The anti-inflammatory effect of palmatine in LPS-stimulated microglia may suggest the potential use of the alkaloids in the modulation of neuroinflammatory responses, which might be important in the pathophysiological events of several neurological diseases including Alzheimer's disease (AD), multiple sclerosis (MS), Parkinson's disease (PD) and stroke.

Characterization of small ubiquitin-like modifier E3 ligase, OsSIZ1, mutant in rice (벼의 small ubiquitin-like modifier E3 ligase, OsSIZ1 돌연변이체의 특성 분석)

  • Park, Hyeong Cheol;Koo, Sung Cheol;Kim, Hun;Choi, Wonkyun;Yun, Dae-Jin
    • Journal of Plant Biotechnology
    • /
    • v.39 no.4
    • /
    • pp.235-241
    • /
    • 2012
  • Sumoylation is a reversible conjugation process that attaches the small ubiquitin modifier (SUMO) peptide to target proteins and regulates a wide variety of cellular functions in eucaryotes. As final step of the sumoylation, SUMO E3 ligases facilitate conjugation of SUMO to target proteins. To characterize the functions of the SUMO E3 ligases in Oryza sativa, we isolated a single recessive rice SUMO E3 ligase, Ossiz1-2 mutant. In addition, we also confirmed the interaction between OsSIZ1/-2 and OsSUMO1, respectively, by using an Agrobacterium-based tobacco luciferase transient expression system. Ossiz1-2 mutant exhibited approximately 20% reduction in growth and developmental units compared with wild type. Especially, number of filled seeds and total seed weight were dramatically decreased in the Ossiz1-2 mutant rice. Thus, these results suggest that sumoylation by the OsSIZ1 as SUMO E3 ligase plays an important role in regulating growth and development in rice.

Measurement of Human Cytochrome P450 Enzyme Induction Based on Mesalazine and Mosapride Citrate Treatments Using a Luminescent Assay

  • Kim, Young-Hoon;Bae, Young-Ji;Kim, Hyung Soo;Cha, Hey-Jin;Yun, Jae-Suk;Shin, Ji-Soon;Seong, Won-Keun;Lee, Yong-Moon;Han, Kyoung-Moon
    • Biomolecules & Therapeutics
    • /
    • v.23 no.5
    • /
    • pp.486-492
    • /
    • 2015
  • Drug metabolism mostly occurs in the liver. Cytochrome P450 (CYP) is a drug-metabolizing enzyme that is responsible for many important drug metabolism reactions. Recently, the US FDA and EU EMA have suggested that CYP enzyme induction can be measured by both enzymatic activity and mRNA expression. However, these experiments are time-consuming and their interassay variability can lead to misinterpretations of the results. To resolve these problems and establish a more powerful method to measure CYP induction, we determined CYP induction by using luminescent assay. Luminescent CYP assays link CYP enzyme activity to firefly luciferase luminescence technology. In this study, we measured the induction of CYP isozymes (1A2, 2B6, 2C9, and 3A4) in cryopreserved human hepatocytes (HMC424, 478, and 493) using a luminometer. We then examined the potential induction abilities (unknown so far) of mesalazine, a drug for colitis, and mosapride citrate, which is used as an antispasmodic drug. The results showed that mesalazine promotes CYP2B6 and 3A4 activities, while mosapride citrate promotes CYP1A2, 2B6, and 3A4 activities. Luminescent CYP assays offer rapid and safe advantages over LC-MS/MS and qRT-PCR methods. Furthermore, luminescent CYP assays decrease the interference between the optical properties of the test compound and the CYP substrates. Therefore, luminescent CYP assays are less labor intensive, rapid, and can be used as robust tools for high-throughput CYP screening during early drug discovery.

Overexpression of CD44 Standard Isoform Upregulates HIF-1α Signaling in Hypoxic Breast Cancer Cells

  • Ryu, Dayoung;Ryoo, In-geun;Kwak, Mi-Kyoung
    • Biomolecules & Therapeutics
    • /
    • v.26 no.5
    • /
    • pp.487-493
    • /
    • 2018
  • Cluster of differentiation 44 (CD44), a cell surface receptor for hyaluronic acid (HA), is involved in aggressive cancer phenotypes. Herein, we investigated the role of the CD44 standard isoform (CD44s) in hypoxia-inducible $factor-1{\alpha}$ ($HIF-1{\alpha}$) regulation using MCF7 overexpressing CD44s (pCD44s-MCF7). When pCD44s-MCF7 was incubated under hypoxia, levels of $HIF-1{\alpha}$, vascular endothelial growth factor, and the $HIF-1{\alpha}$ response element-derived luciferase activity were significantly increased compared to those in the control MCF7. Incubation of pCD44s-MCF7 cells with HA further increased $HIF-1{\alpha}$ accumulation, and the silencing of CD44s attenuated $HIF-1{\alpha}$ elevation, which verifies the role of CD44s in $HIF-1{\alpha}$ regulation. In addition, the levels of phosphorylated extracellular signal-regulated kinase (ERK) was higher in hypoxic pCD44s-MCF7 cells, and $HIF-1{\alpha}$ accumulation was diminished by the pharmacological inhibitors of ERK. CD44s-mediated $HIF-1{\alpha}$ augmentation resulted in two functional outcomes. First, pCD44s-MCF7 cells showed facilitated cell motility under hypoxia via the upregulation of proteins associated with epithelial-mesenchymal transition, such as SNAIL1 and ZEB1. Second, pCD44s-MCF7 cells exhibited higher levels of glycolytic proteins, such as glucose transporter-1, and produced higher levels of lactate under hypoxa. As a consequence of the enhanced glycolytic adaptation to hypoxia, pCD44s-MCF7 cells exhibited a higher rate of cell survival under hypoxia than that of the control MCF7, and glucose deprivation abolished these differential responses of the two cell lines. Taken together, these results suggest that CD44s activates hypoxia-inducible $HIF-1{\alpha}$ signaling via ERK pathway, and the $CD44s-ERK-HIF-1{\alpha}$ pathway is involved in facilitated cancer cell viability and motility under hypoxic conditions.

Development of Optical Molecular Imaging System for the Acquisition of Bioluminescence Signals from Small Animals (소동물 발광영상 측정을 위한 광학분자영상기기의 개발)

  • Lee, Byeong-Il;Kim, Hyeon-Sik;Jeong, Hye-Jin;Lee, Hyung-Jae;Moon, Seung-Min;Kwon, Seung-Young;Choi, Eun-Seo;Jeong, Shin-Young;Bom, Hee-Seung;Min, Jung-Joon
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.4
    • /
    • pp.344-351
    • /
    • 2009
  • Purpose: Optical imaging is providing great advance and improvement in genetic and molecular imaging of animals and humans. Optical imaging system consists of optical imaging devices, which carry out major function for monitoring, tracing, and imaging in most of molecular in-vivo researches. In bio-luminescent imaging, small animals containing luciferase gene locally irradiate light, and emitted photons transmitted through skin of the small animals are imaged by using a high sensitive charged coupled device (CCD) camera. In this paper, we introduced optical imaging system for the image acquisition of bio-luminescent signals emitted from small animals. Materials and Methods: In the system, Nikon lens and four LED light sources were mounted at the inside of a dark box. A cooled CCD camera equipped with a control module was used. Results: We tested the performance of the optical imaging system using effendorf tube and light emitting bacteria which injected intravenously into CT26 tumor bearing nude mouse. The performance of implemented optical imaging system for bio-luminescence imaging was demonstrated and the feasibility of the system in small animal imaging application was proved. Conclusion: We anticipate this system could be a useful tool for the molecular imaging of small animals adaptable for various experimental conditions in future.