• Title/Summary/Keyword: Lubrication system

Search Result 482, Processing Time 0.026 seconds

Economic Feasibility Study for Commercial Production of Bio-hydrogen (해양바이오수소개발 사업의 상업생산을 위한 예비경제성평가)

  • Park, Se-Hun;Yoo, Young-Don;Kang, Sung Gyun
    • Ocean and Polar Research
    • /
    • v.38 no.3
    • /
    • pp.225-234
    • /
    • 2016
  • This project sought to conduct an economic feasibility study regarding the commercial production of bio-hydrogen by the marine hyperthermophilic archaeon, Thermococcus onnurineus NA1 using carbon monoxide-containing industrial off-gas. We carried out the economic evaluation of the bio-hydrogen production process using the raw material of steel mill by-product gas. The process parameter was as follows: $H_2$ production rate was 5.6 L/L/h; the conversion of carbon monoxide was 60.7%. This project established an evaluation criterion for about 10,000 tonne/year. Inflation factors were considered as 3%. The operating costs were recalculated based on prices in 2014. The total investment required for development was covered 30% by capital and 70% by a loan. The operation cost for the 0.5-year test and integration, and the cost for the first three months in the 50% production period were considered as the working capital in the cost estimation. The costs required for the rental of office space, facilities, and other related costs from the construction through to full-scale production periods were considered as continuing expenses. Materials, energy, waste disposal and other charges were considered as the operating cost of the development system. Depreciation, tax, maintenance and repair, insurance, labor, interest rate charges, general and administrative costs, lubrication and miscellaneous expenses were also calculated. The hydrogen price was set at US$ 4.15/kg for the economic evaluation. As a result, the process was considered to be economical with the payback period of 6.3 years, NPV of 18 billion Won and IRR of 26.7%.

Stress Analysis of the Cylinder Block and the Valve Plate of the Swash Plate Type Oil Hydraulic Piston Pump (사판식 유압 픽스톤 펌프의 실린더블록과 밸브 플레이트의 응력해석)

  • Kim J. H.;Cho I. S.;Baek I. H.;Jung Jae-Youn;Oh Suk-Hyung
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.255-260
    • /
    • 2004
  • Recently, the technologies related to the swash plate type oil hydraulic piston pump are requiring extreme technologies to overcome the limit of high efficiency in cope with high speed and pressure, and are devoted to compact the unit, to gain low noise level, and to adopt electronic technologies, and the question regarding to maximize the mechanical efficiency, that is, to minimize the torque loss by minimizing the leakage loss in the relative sliding region but these are in trade-off relation that tribological responding is very difficult. Cylinder block-valve pate in high speed relative sliding motion has the characteristics that should be extremely controlled for the optimization of these leakage loss and mechanical efficiency, and pressure resistance designing of them is important for high pressure performance. But, studies on the stress analysis of these parts have not been performed briskly, so in this paper the stress distribution and the region where the highest displacement appears are described through the static stress analysis using CATIA V5. Through the future studies on these theme, it has the purpose of finding the suitable materials for the other parts as well as cylinder block and valve plate, in cope with high pressure operation through the stress analysis with the most similar conditions for the practical operation.

  • PDF

Friction Power Loss Reduction for a Marine Diesel Engine Piston (박용엔진 피스톤 스커트 프로파일 변경에 의한 마찰손실(FMEP) 저감 연구)

  • An, Sung Chan;Lee, Sang Don;Son, Jung Ho;Cho, Yong Joo
    • Tribology and Lubricants
    • /
    • v.32 no.4
    • /
    • pp.132-139
    • /
    • 2016
  • The piston of a marine diesel engine works under severe conditions, including a combustion pressure of over 180 bar, high thermal load, and high speed. Therefore, the analyses of the fatigue strength, thermal load, clamping (bolting) system and lubrication performance are important in achieving a robust piston design. Designing the surface profile and the skirt ovality carefully is important to prevent severe wear and reduce frictional loss for engine efficiency. This study performs flexible multi-body dynamic and elasto-hydrodynamic (EHD) analyses using AVL/EXCITE/PU are performed to evaluate tribological characteristics. The numerical techniques employed to perform the EHD analysis are as follows: (1) averaged Reynolds equation considering the surface roughness; (2) Greenwood_Tripp model considering the solid_to_solid contact using the statistical values of the summit roughness; and (3) flow factor considering the surface topology. This study also compares two cases of skirt shapes with minimum oil film thickness, peak oil film pressure, asperity contact pressure, wear rate using the Archard model and friction power loss (i.e., frictional loss mean effective pressure (FMEP)). Accordingly, the study compares the calculated wear pattern with the field test result of the piston operating for 12,000h to verify the quantitative integrity of the numerical analysis. The results show that the selected profile and the piston skirt ovality reduce friction power loss and peak oil film pressure by 7% and 57%, respectively. They also increase the minimum oil film thickness by 34%.

Abnormal High-Temperature Behavior Troubleshooting of Process Compressor Tilting Pad Journal Bearing (프로세스 압축기 틸팅패드 저널베어링의 비정상 고온거동 트러블슈팅)

  • Lee, An Sung;Lee, Woonsil;Choi, Dong-Hoon
    • Tribology and Lubricants
    • /
    • v.33 no.2
    • /
    • pp.37-44
    • /
    • 2017
  • A DE-side LBP tilting pad journal bearing of a 1-stage overhung heat-pump compressor in a propylene process exhibited abnormal high-temperature behavior. Its temperature had been relatively high at $78^{\circ}C$ from the beginning of operation. In 2014, after three years of operation, it increased suddenly and reached $103^{\circ}C$. Installing a varnish removal equipment and others managed to stabilize the temperature at $95^{\circ}C$. We undertook a troubleshooting approach for reviewing the comprehensive status and integrity of the temperature design of the bearing. We performed lubrication and heat-balance analysis, based on the design engineering data and documents supplied by the OEM. For the base design data of DE-side TPJB, evaluating the effects of key design variables on bearing metal temperature showed that firstly, increasing the bearing clearance and supply oil flow-rate, and next, changing the oil type, and finally, increasing the machined pad clearance and offset, are more effective in reducing the bearing metal temperature. Furthermore, a clarification meeting with the OEM revealed that an incorrect decision had been made to decrease the bearing clearance to eliminate the SSV harshness issue, while not maintaining a sufficient oil flow-rate. We conducted a detailed retrofit design analysis, wherein we increased the oil flow-rate and bearing clearance by decreasing the preload. We predicted that the bearing temperature would decrease to $63^{\circ}C$ from $75.7^{\circ}C$ even at the rerate condition. Finally, after installing and operating a retrofit replacement bearing in 2015, the bearing temperature stabilized at a low temperature of $65^{\circ}C$. Currently (January. 2017), two year later, the bearing metal temperature remains at $65^{\circ}C$. Therefore, we can conclude that the abnormal high-temperature behavior of the bearing has been resolved completely.

Low-Load/Low-Eccentricity Performance Improvement Designs for Hydro Power Application of Cylindrical Turbine Guide Bearings - Introduction of Pad Leading-Edge Tapers (수력 원통형 터빈 가이드 베어링의 저부하/저편심 성능향상 설계 - 패드 선단 테이퍼의 도입)

  • Lee, An Sung;Jang, Sun-Yong
    • Tribology and Lubricants
    • /
    • v.33 no.2
    • /
    • pp.65-70
    • /
    • 2017
  • In vertical hydro/hydraulic power turbine-generator applications, traditionally, cylindrical turbine guide bearings (TGBs) are widely used to provide turbine runner shafts with smooth rotation guides and supports. All existing cylindrical TGBs with simple plain pads have drawbacks such as having no pressure generation and film stiffness at the no-load condition and in addition, at the low-load/low-eccentricity condition, having very low film stiffness values and lacking design credibility in the stiffness values themselves. In this paper, in order to fundamentally improve the low-load/low-eccentricity performance of conventional cylindrical TGBs and thus enhance their design-application availability and usefulness, we propose to introduce a rotation-directional leading-edge taper to each partitioned pad, i.e., a pad leading-edge taper. We perform a design analysis of lubrication performance on $4-Pad{\times}4-Row$ cylindrical TGBs to verify an engineering/technical usefulness of the proposed pad leading-edge taper. Analysis results show that by introducing the leading-edge taper to each pad of the cylindrical TGB one can expect a constant high average direct stiffness with a high degree of design credibility, regardless of load value, even at the low-load/low-eccentricity condition and also control the average direct stiffness value by exploring the taper height as a design parameter. Therefore, we conclude that the proposed pad leading-edge tapers are greatly effective in more accurately predicting and controlling rotordynamic characteristics of vertical hydro-power turbine-generator rotor-bearing systems to which cylindrical TGBs are applied.

Performance Improvement of Cylindrical Turbine Guide Bearings with Pad Leading-Edge Tapers for Vertical Hydro-Power Application: Effects of Taper Angle and Length (패드 선단 테이퍼를 갖는 수력 수직 원통형 터빈 가이드 베어링의 성능향상 - 테이퍼 각도와 길이의 영향)

  • Lee, An Sung;Jang, Sun-Yong;Park, Soo Man
    • Tribology and Lubricants
    • /
    • v.34 no.1
    • /
    • pp.16-22
    • /
    • 2018
  • Cylindrical turbine guide bearings (TGBs) with simple plain pads have conventionally been used in vertical hydro-power turbine-generator applications in order to provide turbine runner shafts with smooth rotation guides and supports. To overcome low-load/low-eccentricity performance drawbacks, such as very low film stiffness and lack of design credibility in the stiffness values themselves, of conventional cylindrical TGBs, the introduction of a rotational-directional leading-edge taper to each partitioned pad, simply pad leading-edge taper, has been found to be very effective in enhancing their design-application availability and usefulness. In this study, we investigate the effects of taper angle and length for given taper heights in detail in order to systematically establish the effectiveness of design on the performance improvement of vertical hydro-power application cylindrical TGBs with pad leading-edge tapers. The analysis results with $4-Pad{\times}1-Row$ cylindrical TGBs show that the lubrication performance of the cylindrical TGBs is optimized with an approximate taper angle ratio of 0.8 and taper length ratio of 0.9. We conclude that the introduction of pad leading-edge tapers along with the optimization of taper designs can be very effective in improving the overall operation reliability of cylindrical TGBs and the rotordynamic characteristics of vertical hydro-power turbine-generator rotor-bearing systems as well, to which the TGBs are applied.

CFD Analysis of Trap Effect of Groove in Lubricating Systems: Part I - Variation in Cross-Sectional Shape of Groove (그루브의 Trap 효과에 대한 CFD 해석: 제 1부 − 그루브 단면 형상의 변화)

  • Hong, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.32 no.3
    • /
    • pp.101-105
    • /
    • 2016
  • Trap effect of groove is evaluated in a lubricating system using computational fluid dynamics (CFD) analysis. The simulation is based on the standard k-ε turbulence model and the discrete phase model (DPM) using a commercial CFD code FLUENT. The simulation results are also capable of showing the particle trajectories in flow field. Computational domain is meshed using the GAMBIT pre-processor. The various grooves are applied in order to improve lubrication characteristics such as reduction of friction loss, increase in load carrying capacity, and trapping of the wear particles. Trap effect of groove is investigated with variations in cross-sectional shape and Reynolds number in this research. Various cross-sectional shapes of groove (rectangular, triangle, U shaped, trapezoid, elliptical shapes) are considered to evaluate the trap effect in simplified two-dimensional sliding bearing. The particles are assumed to steel, and defined a single particle injection condition in various positions. The “reflect” boundary condition for discrete phase is applied to the wall boundary, and the “escape” boundary condition to “pressure inlet” and “pressure outlet” conditions. The streamlines are compared with particles trajectories in the groove. From the results of numerical analysis in the study, it is found that the cross-sectional shapes favorable to the creation of vortex and small eddy current are effective in terms of particle trapping effect. Moreover, it is found that the Reynolds number has a strong influence on the pattern of vortex or small eddy current in the groove, and that the pattern of the vortex or small eddy current affects the trap effect of the groove.

A Study on Efficiency of Tapered Roller Bearing for an Automatic Transmission (승용차 자동변속기용 테이퍼 롤러 베어링의 효율개선 연구)

  • Lee, In-Wook;Han, Sung Gil;Shin, Yoo In;Song, Chul Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.30-36
    • /
    • 2018
  • Automotive fuel efficiency regulations and air pollution control are hot issues of recent years in the automotive industry. To solve these regulation problems, many studies are continuing to improve the transmission efficiency of transmissions. Tapered roller bearings are useful to improve the transmission efficiency in the recent automobile parts. The frictional losses in the tapered roller bearings are mainly composed of the rolling friction and the sliding friction, and are dependent upon the load, the lubrication, the rotation speed of bearings, and etc. In this paper, the operating conditions of the transmission are defined and then the power losses of each bearing are calculated. In addition, improvement options are suggested after identifying the design factors influenced much by the improvement effect of power loss under the operating conditions of each bearing. We compare the power losses of the entire transmission system due to bearing improvements by comparing the friction losses between the original design and the improved design. Lastly, it is shown that the calculated power losses are valid by comparing the test values and the theoretical values for the frictional torque characteristics of the original and improved bearings.

Effect of Normal Force and Temperature on Tribological Properties of Wet Clutch Friction Material (하중 및 온도에 따른 습식 클러치 마찰재의 트라이볼로지 특성)

  • Park, Hyeseon;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.35 no.1
    • /
    • pp.30-36
    • /
    • 2019
  • The tribological properties of paper-based friction materials are crucial to the performance of a wet clutch system. In this work, the friction and wear characteristics of a paper-based friction material in boundary lubrication state was experimentally investigated using a pin-on-reciprocating tribotester under various normal forces and temperatures. It was found that the wear rate of the friction material increased from $5.8{\times}10^{-6}mm^3/N/cycle$ to $5.5{\times}10^{-5}mm^3/N/cycle$ after 1,700 cycles of testing at $80^{\circ}C$ as normal force increased from 2 N to 7 N. The friction coefficient was also found to increase from 0.135 to 0.155 with increasing normal force from 2 N to 7 N. The increase in contact pressure with increasing normal force may be responsible for these results. In addition, as temperature increased from $20^{\circ}C$ to $80^{\circ}C$, the wear rate of the friction materials increased from $2.0{\times}10^{-5}mm^3/N/cycle$ to $3.6{\times}10^{-5}mm^3/N/cycle$ while the friction coefficient decreased from 0.163 to 0.146. This result may be associated with the decrease in the hardness of friction materials with increasing temperature. Furthermore, plastic deformation on the friction materials was mainly observed after the test. The outcome of this work may be useful to gain a better understanding of the tribological properties of friction materials, and therefore can contribute to the development of friction materials with enhanced performance for wet clutch systems.

Root cause analysis of the abnormal wear on diesel engine crankpin and lubricant contamination (윤활유 오염과 디젤엔진의 크랭크핀 이상마모에 대한 원인 규명)

  • Seo, Jeongwoo;Park, Donghee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.854-867
    • /
    • 2014
  • In the circumstance that high oil price state is continued over the world, the investment in crude oil development by oil major is a trend of increasing. Recently the number of delivered drill-ship for 5 years has been sharply increased all over the world and about twice than that of past 30 years. As addition to the increase of the drill-ship demand, the operation of drill-ships which is delivered recently is about 3,000 meters, ultra deep sea, on average and the work area is expending. Accordingly the drilling system including the size and length of pipe for drilling has been bigger and bigger and the power supply equipment for operation system also has large capacity. Unlike merchant vessel, high power and high voltage of diesel generators are required for drill-ship for which the demand for V-type 320 bore of diesel generator has increased. It is on the raised that the importance of lubrication oil cleaning for diesel generator on drill-ship which has longer time for construction, and also long term low load operation is unavoidable during commissioning of equipments. Recently it was reported that engine crankpin was damaged due to the hard contact caused by the abnormal wear down(Cam wear) on crankpin and bearing. The same pattern of wear down was found through the inspection on series vessels and the other vessel under commissioning. The purpose of this paper is to analyze of the wear mechanism based on the observation and theories and objective research from actual cases and to prepare the counter measures to avoid foreseeable damage when the lubricating oil is not properly cleaned.