• Title/Summary/Keyword: Lubrication Temperature

Search Result 404, Processing Time 0.026 seconds

Preparation and Characterization of Polymer Lubricating Bearings (고온용 폴리머 윤활 베어링의 특성 연구)

  • Han, Jong-Dae;Kim, Sang-Keun;Kim, Byung-Kwan
    • Tribology and Lubricants
    • /
    • v.24 no.4
    • /
    • pp.179-185
    • /
    • 2008
  • Microporous polymer lubricants(MPLs) are solid polymer materials containing micropores which are filled with liquid lubricants, and which are molded or formed to suit rolling bearings or other machine parts requiring lubrication. MPLs can be effectively applied to provide long-term, maintenance-free lubrication of a variety of machine elements without fully replacing of oils and greases. The application of rolling bearings packed fully with an MPL could reduce or eliminate the problems such as grease deterioration, leakage, under-lubrication caused by insertion of water or foreign matters under severe operation conditions. This paper discuss the application of MPLs for lubrication of rolling ball bearings. Two different MPLs were synthesized and the features of MPLs were tested. Characteristics of the bearings which are packed fully with synthesized MPLs were investigated using SEM, TG/DSC, extents of oil leakage, OIT, and life time test. After these preliminary tests twelve MPLs were synthesized and evaluated by measuring extents of oil leakage and OIT values. Then synthesis conditions for the optimum MPL were selected by SSRED(Six Sigma Robust Engineering Design) pro gram using extents of oil leakage and OIT values respectively. The optimum MPL by means of OIT value showed higher performance such as long life time and application at higher temperature of $140^{\circ}C$ than previous temperature of $100^{\circ}C$.

Development of Low Pollution Grinding Technology using Mist (Mist를 이용한 저공해 연삭 가공기술 개발)

  • 최헌종;이석우;김대중;정해도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.793-797
    • /
    • 2000
  • The environmental problems by using coolant demanded the new cooling methods. As one of them the studies on the dry grinding with compressed cold air have been done. The cooling method using compressed cold air was effdve thmugh going down the temperature of compressed air supplied below $-25^{\circ}C$ and inneasing the amount of mmpresd cold air, but had not enough cooling effect due to the low performance of lubrication. Therefore, the cooling methods using MQL(Minimum Quantity Lubrication) or mist newly were suggested. These two methods can satisfy both cooling effect and lubrication with only small amount of coolant, also has the benefit in the point of decreasing the envimnmental pollution. This paper focused on analyzing the grindmg characteristics of the cooling method using mid. The generated heat and grinding force of the cooling method using mist were compared with them of coolant and compressed cold air. And them grinding test according to the temperature of compressed cold air, mist spray amount and mist supply direction were done.

  • PDF

Effect of Film-Temperature Boundary Conditions on the Lubrication Performance of Parallel Slider Bearing (유막온도경계조건이 평행 슬라이더 베어링의 윤활성능에 미치는 영향)

  • Park, TaeJo;Kim, MinGyu
    • Tribology and Lubricants
    • /
    • v.33 no.5
    • /
    • pp.207-213
    • /
    • 2017
  • In sliding bearings, viscous friction due to high shear acting on the bearing surface raises the oil temperature. One of the mechanisms responsible for generating the load-carrying capacity in parallel surfaces is known as the viscosity wedge effect. In this paper, we investigate the effect of film-temperature boundary conditions on the thermohydrodynamic (THD) lubrication of parallel slider bearings. For this purpose, the continuity equation, Navier-Stokes equation, and the energy equation with temperature-viscosity-density relations are numerically analyzed using the commercial computational fluid dynamics (CFD) code FLUENT. Two different film-temperature boundary conditions are adopted to investigate the pressure generation mechanism. The temperature and viscosity distributions in the film thickness and flow directions were obtained, and the factors related to the pressure generation in the equation of motion were examined in detail. It was confirmed that the temperature gradients in the film and flow directions contribute heavily to the thermal wedge effect, due to which parallel slider bearing can not only support a considerable load but also reduce the frictional force, and its effect is significantly changed with the film-temperature boundary conditions. The present results can be used as basic data for THD analysis of surface-textured sliding bearings; however, further studies on various film-temperature boundary conditions are required.

Lubrication Characteristics of High-Speed Ball Bearing with Oil-Jet Lubrication (Oil-Jet 윤활시 가스터어빈용 고속 Ball Bearing 윤활특성)

  • 김기태
    • Tribology and Lubricants
    • /
    • v.12 no.4
    • /
    • pp.28-34
    • /
    • 1996
  • The lubrication characteristics of high-speed ball bearings have been investigated empirically using 45mm bore split inner ring ball bearings employed in small industrial gas turbine engines with oil-jet lubrication method. For the close structural simulation, experiments carried out with bearing mounting supports of real engines, such as bearing housings and oil nozzle assemblies with squeeze film dampers. Thus the results of tests can be directly applied to the design and the development of gas turbine engines. Testing was done by varying operating speeds, axial load on bearings, and lubricant flow rates. During testing, the temperature of bearing at outer-ring face, the power consumption of the driving motor, and the rotating resistance of the bearing were measured. From this study, the representative factors for lubrication characteristics at high speed was found, and the most important one was not operating speed but axial load up to 1.95 million dmN speed and 2969 N axial load. Furthermore, the detailed variation of the rotational resistance of the bearing could be visualized by measuring the change of the radial load under the bearing supports. The rotational resistance consists of the frictional resistance and the bearing-cavity oil resistance.

Thermal Reliability Analysis of the Bearing Units in a Centrifugal Pump (원심펌프 베어링 유닛의 열신뢰성 분석)

  • Moon, Jung-Hwan;Moon, Seung-Jae;Lee, Jae-Heon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.4
    • /
    • pp.313-320
    • /
    • 2007
  • In this paper, the experimental study has been carried out to investigate the reliability lifetime of two bearing units based on the oil temperature. Measurements for the oil temperature as well as the bearing temperature during normal operation were performed to study the effects of oil viscosity and oil submergence percentages in the two bearing units. The optimal lubrication condition to increase the lifetime of the bearing unit A was found that its viscosity and submergence percentage were VG32 and 25%, respectively. For the bearing unit B, when the oil viscosity and submergence percent were VG32 and 75%, the lubrication condition was the most efficient. Finally, the adjusted rating times of both the bearing units were calculated to be over 28,000 h, which is greater than the minimum adjusted rating times of 25,000 h. Therefore, they satisfied the regulated lifetime of API 610.

Chemical reconstruction of Castor Oil --Research of Environmentally Friendly Lubricants

  • Tao, De-Hua;Ye, Bin
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.339-340
    • /
    • 2002
  • Natural castor oil was chemically reconstructed to extend the carbon chains by means of iso-reaction so as to improve the rheological behavior, by way of increasing the viscosity index and decreasing the pour point. The rheological and tribological characteristics of the reconstructed castor oil were comparatively investigated with those of the natural castor oil and several other vegetable oils and a mineral oil. The friction and wear test results on a four-ball machine indicate that the chemically reconstructed castor oil has considerably improved rheological and tribological properties as compared with the natural castor oil. It shows a greatly increase viscosity index and largely decreased pour point, which makes it applicable to low temperature lubrication. The chemically reconstructed castor oil even shows better tribological behavior than pentaerythritol ester or di-iso-capryl sebacate. However, it is still needed to increase the oxidation stability of the reconstructed castor oil.

  • PDF

A Study on Bubbly Lubrication of High-Speed proceeding Bearing Considering Live Surface Tension

  • Chun, S.-M.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.111-112
    • /
    • 2002
  • The influence of aerated oil on a high-speed proceeding bearing is examined by using the classical thermohydrodynamic lubrication theory coupled with analytical models for viscosity and density of air-oil mixture in fluid-film bearing including the live surface tension of aerated oil. Convection to the walls and mixing with supply oil and re-circulating oil are considered. The considered parameters for the study of bubbly lubrication are oil aeration level, air bubble size and shaft speed. The results show that, if the live surface tension is considered, the effect of air bubbles on the bearing load capacity is reduced due to temperature engagement comparing with that under the condition of a constant surface tension.

  • PDF

Friction characteristics between the cylinder block and the valve plate in axial piston pump (액셜 피스톤 펌프에서 실린더 블록과 밸브 플레이트 사이의 마찰 특성)

  • 김종기;정재연
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.249-255
    • /
    • 1998
  • To increase the efficiency of the hydraulic axial piston pumps, we have to know the various characteristics in the sliding parts of them. Especially, friction characteristics between the cylinder block and the valve plate in the hydraulic axial piston pumps plays an important role to high power density. In this paper, we tried to clarify friction characteristics between the cylinder block and the spherical valve plate in bent-axis-type axial piston pump by using of modeling experiment. The main results of this study are these; (1) Friction torque between the cylinder block and the spherical valve plate has a proportional relation to weight or rotational speed, and is strongly affected by temperature. (2) Friction torque strongly depends on force balance ratio. (3) In this experiment, lubrication condition between the cylinder block and the spherical valve plate is under hydrodynamic lubrication.

  • PDF

Tribological diagnostics of machinery

  • Myshkin, N.K.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1990.06a
    • /
    • pp.7-31
    • /
    • 1990
  • Tribologicsl diagnostics as the ensemble of means and methods of continuous monitoring of the state of friction characteristics of moving junctions is playing an ever important part in the development of friction, lubrication, and wear theory end practice. The scheme presenting the main areas of tribological diagnostics is given in Fig. I. This growing part of TD is determined by the general tendency of modern technology, expressed in an attempt to organically combine the functions of measuring, evaluating,and predicting the parameters and characteristics of the processee taking place in the operating device. The logical result of this integration in future is the closed system correcting its operation in accordance with sn established program. Unfortunately, tribotechnicsl devices are still very far from such an ideal system at the present time. While in the friction assemblies with hydrodynamic lubrication it is possible in the first approximation to realize feed-backs in the lubricant circulation system with the aid of monitoring of the pressure, temperature and filtration, in the systems operating without lubrication and with boundary lubricetion even the process of selection of the diagnostic parameters has not been completed.

  • PDF

A Study on the Engine Friction & Lubrication Characteristics related with Oil Aeration (오일 Aeration에 따른 엔진의 마찰 및 윤활 특성에 대한 연구)

  • 김영직;이창희;윤정의
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.184-189
    • /
    • 1999
  • This Paper presents the friction and lubrication charateristic related with oil aeration. It is well known that oil aeration occurs severe problem on lubrication system, in particular, in the engine bearings and hydraulic lash adjuster. In this study, engine tests were carried out in motoring conditions. In order to investigate oil aeration characteristics, we measured oil aeration with respect to oil temperature, oil viscosity, modified oil drain system. From the results, we concluded that aeration can be reduced by improving oil drain system and FMEP can be reduced by minimising of aeration.

  • PDF