• 제목/요약/키워드: Lubricated Rolling

검색결과 15건 처리시간 0.021초

CFD를 이용한 수윤활 볼베어링의 구름 요소 주위의 마찰 토크분석 (CFD-Based Flow Analysis of Rolling Elements in Water-Lubricated Ball Bearings)

  • 조준현;김충현
    • Tribology and Lubricants
    • /
    • 제29권4호
    • /
    • pp.218-222
    • /
    • 2013
  • Water-lubricated ball bearings consist of rolling elements, an inner raceway, an outer raceway, a retainer, and an operating lubricant. In the water environment, ball bearings are required to sustain high loads at high speeds under poorly lubricated conditions. For the analysis of bearing behavior, friction torque is considered as the main factor at various flow rates, rotating speeds, and roughnesses between the rolling element and raceways. When the bearing operates at high rotating speeds, the friction torque between the raceway and rolling elements increases considerably. This frictional torque is an important factor affecting bearing reliability and life cycle duration. For understanding the flow conditions in the inner part of the bearing, this study focuses on the flow around the rotating and revolving rolling elements. A simple model of fluid flow inside the ball bearing is designed using the commercial CFD program ANSYS.

열간 압연판재 제조기술의 최신동향 (Recent Trends in Flat Hot Rolling of Steel)

  • 이준정
    • 소성∙가공
    • /
    • 제11권1호
    • /
    • pp.24-35
    • /
    • 2002
  • Recent trend and future prospect of flat rolling of steel has been summarized based on the earlier reports. Key technology in the plate rolling is to have ultra fine microstructure having high resistance against crack propagation during application. Heavy accelerated cooling facility and high power rolling mill will be helpful to develope the high toughness steel. Precise modeling of properly prediction based on deformation and transformation imposed on microstructure of steel during processing is highly anticipated. For the hot strip rolling process, new trend is lies on the production of ultra-thin gauged hot strip to substitute cold rolled strip. For the substitution of cold rolled strip into hot rolled strip widely, high formable property of hot strip is highly required. For the formabilit, the ferritic rolling of extra low carbon steel under high lubricated condition is essential. Recently introduced semi-continuous thin slab and rolling mill line is very plausible to develope those kinds of products easily In the view groin facility combination. New idea to modify the existing continuous hot strip mill line to produce the ultra thin-gauged hot strip in an economic way is suggested in this report.

볼 베어링의 구름 요소 주위 유동 특성에 대한 해석 (Analysis of Fluid Flow Characteristics Around Rolling Element in Ball Bearings)

  • 조준현;김충현
    • Tribology and Lubricants
    • /
    • 제28권6호
    • /
    • pp.278-282
    • /
    • 2012
  • Various bearings such as deep-groove ball bearings, angular-contact ball bearings, and roller bearings are used to support the load and to lubricate between the shaft and the housing. The bearings of potential rolling systems in a turbo pump are the deep-groove ball bearings as comparing with the bearings with rolling elements such as cylindrical rollers, tapered cylindrical rollers, and needle rollers. The deep-groove ball bearings consist of rolling elements, an inner raceway, an outer raceway and a retainer that maintain separation and help to lubricate the rolling element that is rotating in the raceways. In the case of water-lubricated ball bearings, however, fluid friction between the ball and raceways is affected by the entry direction of flow, rotation speed, and flow rate. In addition, this friction is the key factor affecting the bearing life cycles and reliability. In this paper, the characteristics of flow conditions corresponding to a deep-groove ball bearing are investigated numerically, with particular focus on the friction distribution on the rolling element, in order to extend the analysis to the area that experiences solid friction. A simple analysis model of fluid flow inside the water-lubricated ball bearing is analyzed with CFD, and the flow characteristics at high rotation speeds are presented.

구름계의 구름저항 및 표면파손현상의 실험적 고찰 (Investigation of rolling resistance and surface damage of rolling elements)

  • 차금환;김대은
    • 대한기계학회논문집A
    • /
    • 제21권12호
    • /
    • pp.2019-2028
    • /
    • 1997
  • It has been well established that resistant force and wear that occur during rolling motion depend on several factors such as material type, hardness, subsurface microstructure, applied load, and speed. The purpose of this work is to investigate the effect of microstructure and the state of deformed layer on the rolling contact characteristics in dry and lubricated rolling contacts. The results of this work show that the rolling resistance behavior depends on the state of the deformed layer. Also, lubrication can reduce the plastic flow at the surface but may still have an effect on the subsurface strain. The cross-sectional view of the microstructure shows that surface traction has a difinite effect on the morphology of the surface region. That is, significant slip seems to have taken place between the ball than those of the dry rolling case. The surface generation effects were significantly less compared to the case of dry rolling contact.

Comparison of Rolling Contact Fatigue Life of Bearing Steel Rollers Lubricated with Traction Oil and Mineral Oil Corresponding to ISO VG32

  • Nakajima, A.;Mawatari, T.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.291-292
    • /
    • 2002
  • Using a low viscosity synthetic traction oil and a low viscosity mineral oil with nearly equal viscosity grade of ISO VG 32, the effect of kind of oil on the fatigue life of bearing steel rollers was examined. A pair of rollers finished the contact surfaces to a mirror-like condition were driven under rolling with sliding conditions of s = -3.2% and a maximum Hertzian stress in the range of $P_H=2.8GPa{\sim}4.0GPa$ was applied in point contact condition. As a result of experiments, the fatigue life with a mineral oil was longer than that with a traction oil under higher stress conditions above $P_H=3.4GPa$. Based on the numerical calculation results of the thermal EHL which simulates the present experiment, the authors discuss the reason why such a difference in the fatigue life comes out.

  • PDF

오일윤활 빗살무늬 저널 베어링에 대한 정특성 및 안정성 해석 (A study on the static and stability characteristics of the oil-lubricated herringbone groove journal bearing)

  • 강경필;임윤철
    • 대한기계학회논문집A
    • /
    • 제22권4호
    • /
    • pp.859-867
    • /
    • 1998
  • An oil lubricated Herringbone aroove jounal bearing(HGJB) with eight-circular-profile grooves on the non-rotating bearing surface is analyzed numerically and experimentally. The load carrying capacity, attitude angle, stiffness and damping coefficients are obtained numerically for the various bearing configurations. The onset speed of instability is also examined for the various eccentricity ratios. The configuration parameters of HGJB, such as groove depth ratio, groove width ratio, and groove angle, are dependent on each other because the grooves are generated by using eight small balls rolling over the inner surface of the sleeve with press fit. Therefore, it is not allowed to suggest a set of optimal design parameters such as the one for the rectangular profile HGJB. The overall results from numerical and experimental analysis prove that the circular profile HGJB has an excellent stability characteristics and the higher load carrying capacity than the plain journal bearing.

A Study on Lubricative Characteristics of Negative Pressure Slider

  • Hwang, Pyung;Park, Sang-Shin;Kim, Eun-Hyo
    • KSTLE International Journal
    • /
    • 제3권2호
    • /
    • pp.110-113
    • /
    • 2002
  • The lubricative characteristics of negative pressure slider were performed by using coordinate transform method. Governing equation is derived by applying generalized coordinate system to the divergence formulation method. This method makes it possible to deal with an arbitrary configuration of a lubricated surface. The pressure profile of the slider is calculated. These results are compared to that from direct numerical method. The steady-state, including minimum film thickness, pitching and rolling angle are calculated by multi-dimensional Newton-Rapshon method. The stiffness and damping characteristics are also calculated.

나노다이아몬드를 첨가한 오일의 트라이볼로지 특성 및 이에 미치는 표면 경도의 영향 (Tribological Characteristics of Paraffin Liquid Oil with Nanodiamond and Effects of Surface Hardness on Wear Properties)

  • 이규선;김현수;이정훈;박태희;이정석;이영제
    • Tribology and Lubricants
    • /
    • 제27권6호
    • /
    • pp.321-325
    • /
    • 2011
  • Nanodiamond was dispersed in paraffin liquid oil to investigate the effects of nanodiamond at the marginally lubricated condition. Scuffing test and immediate loading sliding wear test were conducted using the fabricated nanodiamond oil. As a result, dispersion of nanodiamond in oil leads to increase in scuffing life, and nanodiamond contents affects the scuffing life. In case of immediate loading sliding wear test, the result was different according to hardness of specimen. If hardness of specimen was low, abrasion of nanodiamond occurred actively. If hardness of specimen was increased, however, nanodiamond can act as a spacer or rolling between contacting surfaces.

An Application of Coordinate Transformation Method on Lubricating Characteristics of Negative Pressure Slider

  • Hwang, Pyung;Park, Sang-Shin;Kim, Eun-Hyo
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.285-286
    • /
    • 2002
  • The lubricating characteristics of negative pressure slider were performed by using divergence formulation method with the coordinate transformation method. This method makes it possible to deal with an arbitrary configuration of a lubricated surface. The pressure profile of the slider is calculated. These results are compared to that from direct numerical method. The steady-state, including minimum film thickness, pitching and rolling angle are calculated by multi-dimensional Newton-Rapson method. The stiffness and damping characteristics are also calculated.

  • PDF

터보펌프 볼 베어링의 마찰 토크 평가 (Evaluation of Friction Torque for a Turbopump Ball Bearing)

  • 전성민;곽현덕;김진한
    • Tribology and Lubricants
    • /
    • 제27권1호
    • /
    • pp.25-33
    • /
    • 2011
  • Rolling contact ball bearings are utilized almost exclusively for liquid propellant rocket engine turbopump. Turbopump ball bearings are required to endure high speed and high load for a poor lubricated condition in cryogenic environment. To evaluate bearing heat generation performance, friction torque is investigated as a function of rotation speed, bearing load and cooling flow rate through an experimental study using water coolants. Radial and axial loads are simultaneously applied to the test bearing by gas pressurized cylinder rod. Endurance performance of bearing has been also verified under the bearing required load for operating condition during total accumulated test time 2,100 sec.