• Title/Summary/Keyword: Lubricant friction

Search Result 288, Processing Time 0.027 seconds

Analysis of Performance of Multi-functioned frictional force measuring instrument using adaptive smoothing (적응화 평활화법을 이용한 다기능 마찰력 측정기의 성능 분석)

  • Kim, Tae-Soo;Kim, Gwang-Su
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.2
    • /
    • pp.113-119
    • /
    • 2019
  • We have developed the multi-functioned friction measuring instrument for the previous research. In here, we improved the performance of friction measuring instrument by applying the adaptive smoothing method and analyzed the friction of plate and monitoring function of friction surface through scratch tests. We substituted lubricant steel plate to lubricant oil used for reducing the friction when fabricating steel plate because lubricant oil was regarded as one of the major causes for the environmental pollution. In particular, the functions of various plate such as galvannealed steel sheets were analyzed because friction coefficient could be changed depending on the type of organic/inorganic plate or state of coating layer. Therefore, we demonstrated that adaptive smoothing method could enhance the accuracy of measuring instrument which eliminate the noise. As a result of using the method, it showed the reduction rate 0.0417% for the friction coefficient 0.16.

Preparation and Characterization of Lubricating Oil-based Nanofluids Containing Carbon Nanoparticles (탄소 나노소재를 이용한 윤활유 기반 나노유체의 제조 및 평가)

  • Choi, Cheol;Jung, Mi-Hee;Oh, Jae-Myung
    • Korean Journal of Materials Research
    • /
    • v.19 no.3
    • /
    • pp.156-162
    • /
    • 2009
  • Lubricant-based nanofluids were prepared by dispersing carbon nanoparticles in gear oil. In this study, the effects of the particle size, shape and dispersity of the particles on the tribological properties of nanofluids were investigated. Dispersion experiments were conducted with a high-speed bead mill and an ultrasonic homogenizer, and the surfaces of the nanoparticles were simultaneously modified with several dispersants. The effective thermal conductivity of the nanofluids was measured by the transient hot-wire method, and the tribological behaviors of the nanofluids were also investigated with a disk-on-disk tribo-tester. The results of this study clearly showed that the combination of the nanoparticles, the deagglomeration process, the dispersant and the dispersion solvent is very important for the dispersity and tribological properties of nanofluids. Lubricant-based nanofluids showed relatively low thermal conductivity enhancement, but they were highly effective in decreasing the frictional heat that was generated. For nanofluids containing 0.1vol.% graphite particles in an oil lubricant, The friction coefficient in the boundary and fluid lubrication range was reduced to approximately 70% of the original value of pure lubricant.

An Investigation on the Mechanical Behaviors of Lubricant and Coating to Improve the Drawability of Non-heat Treated Steels (열처리 생략강의 인발특성 향상을 위한 윤활제와 피막제의 기계적 거동 고찰)

  • Lee, Sang-Jun;Yoo, Ui-Kyung;Lee, Young-Seog;Byon, Sang-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.62-67
    • /
    • 2008
  • In this research, we developed a pilot wire-drawing machine as well as wire end-pointing roller. Using these machines, we performed a pilot wire-drawing test at different coating material and lubricant when the reduction ratio is 10 %. To inversely compute the friction coefficient between the coating layer of wire and the surface of die for a specific lubricant, we carried out a series of three dimensional finite element analysis. Results show that the drawing force is varied with the coating material of wire at the same reduction ratio and lubricant. It is noted that the frictional coefficient in drawing is dependent on the coupled property of coating material and lubricant, indicating the best coating material for a given lubricant.

  • PDF

Fabrication and Properties of Nano-structured Ceramics

  • Ueno, Tomoyuki;Yoshimura, Masashi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.321-322
    • /
    • 2006
  • Nano-structured ceramics, which consist of structural elements with nanometer-size crystallites, are expected to show various unusual properties. We developed the novel nano-structured ceramics which consists of $Si_3N_4$ and TiN and a self-lubricant material. The ceramics was fabricated by powder metallurgy process using mechano-chemical grinding process and short-time sintering process. Each grain size of matrix and the self-lubricant particle was under about 50 nm and a few namometer. It showed high wear resistance and low friction coefficient by controlling of microstructure.

  • PDF

The Effect of Lubricants on the Tribological Characteristics (트라이볼로지 특성에 미치는 윤활제의 영향)

  • 김중현
    • Tribology and Lubricants
    • /
    • v.19 no.6
    • /
    • pp.365-369
    • /
    • 2003
  • This paper presents an experiment of the characteristics of lubricating oils for refrigerating and air conditioning. We investgate influences of lubricating oils and additives on friction and wear by reciprocating type and pendulum type friction testers. The result shows that polyolesters have excellent friction characteristics and poor effect of additives. In contrast, polyvinylethers gave higher coefficient of friction, low wear amount and good effect of additives. We can see good relationship between the coefficients of friction in recipricating type and pendulum type friction testers.

Effect of the Amount of a Lubricant and an Abrasive in the Friction Material on Friction Characteristics (자동차 제동시 나타나는 마찰특성에 관한 연구(I. 고체 윤활제($Sb_2S_3$)와 연마제($ZrSiO_4$)의 함량에 따른 영향)

  • Jang, Ho
    • Tribology and Lubricants
    • /
    • v.13 no.1
    • /
    • pp.34-41
    • /
    • 1997
  • Frictional behavior of three automotive friction materials (brake pads) containing different amounts of antimony trisulfide ($Sb_2S_3$) and zirconium silicate ($ZRSiO_4$) were investigated using a front brake system. The friction materials were tested on a brake dynamometer (dyno) with gray cast iron rotors. The dynamometer(dyno) test simulated the dragging of a ehicle maintaining 70 km/h and vehicle stops from 100 km/h using 20 different combinations of initial brake temperature (IBT) and input pressure (IP). The results showed a strong influence of the relative amount of $Sb_2S_3$ and $ZrSiO_4$ in friction materials on friction characteristics. Friction stability was improved with the higher concentration of $Sb_2S_3$ in the friction material. Torque variation during drag cycle was increased with an increase of the $ZrSiO_4$ concentration in the friction material. Average friction coefficient and the wear rate of the friction material increased by using more aggressive friction materials containing more $ZrSiO_4$ and less $Sb_2S_3$. Generation of the disk thickness variation (DTV) increased when friction materials with higher concentration of $ZrSiO_4$ were used Careful examination of DTV change showed that aggressiveness of the friction material played an important role in determining torque variation.

A Study on the Friction Characteristics in Tube Hydroforming Process (튜브 하이드로포밍 공정에서의 마찰특성에 관한 연구)

  • 김영석;손현성;한수식
    • Transactions of Materials Processing
    • /
    • v.11 no.6
    • /
    • pp.475-481
    • /
    • 2002
  • Tube hydroforming is a relatively new technology in comparison with conventional stamping process. Thus, there is no large knowledge base to assist the product and process designers, especially from the friction point of view. This paper covers the topic of friction and lubrication with regard to tube hydroforming. It presents the fact that frictional characteristic can have an effect on the formability of specific components. The presented concept describes the equipment which is required to determine the friction coefficient. Some example results of the friction and bulge test are shown.

Study for Frictional Characteristics of graphite lubricants in hot. warm forging (열ㆍ온간 단조에서 그라파이트 윤활제의 마찰 특성에 대한 연구)

  • ;;T.A. Dean
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.29-37
    • /
    • 2000
  • At present there are many theories as to how various lubricants used in forging perform the role of reducing friction. Little work has been carried out to determine the validity of these theories for solid lubricants. This paper covers the development and preliminary results of the experiments devised to illustrate the movement of graphite at the workpiece/tool interface in the work forging temperature range. The paper describes the results obtained from upsetting of rings between two flat dies for measurement of lubricant thickness and compaction of graphite for density-pressure relationship. These allowed the lubricant to be exposed to forging conditions and by applying the principles of Male's ring test the simple generation of a value fur friction factor could also be determined. The experiments have been undertaken to examine the behavior of lubricant for shot blasted surface and change of surface roughness. A simple computer model of the interface has been constructed characterizing the graphite layer in an attempt to simulate the boundary mechanics.

  • PDF

A Theoretical and Experimental Study on the Tribological Size Effect in Microforming Processes (마이크로 성형에서 마찰거동의 크기효과에 대한 이론적 및 실험적 연구)

  • Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.22 no.7
    • /
    • pp.394-400
    • /
    • 2013
  • Microforming is a very efficient and economical technology to fabricate very small metallic parts in various applications. In order to extend the use of this forming technology for the production of microparts, the size effect, which occurs with the reduction of part size and affects the forming process significantly, must be thoroughly investigated. In this study, the tribological size effect in microforming was studied using modeling and scaled ring compression experiments. A micro-scale friction approach based on the slip-line field theory and lubricant pocket model was used to understand the friction mechanism and explain the tribological size effect. Ring compression tests were performed to analyze the interfacial friction condition from the deformation characteristics of the ring specimens. In addition, finite element analysis results were utilized to quantitatively determine the size-dependent frictional behavior of materials in various process conditions. By comparing theoretical results and experimental measurements for different size factors, the accuracy and reliability of the model were verified.