• Title/Summary/Keyword: Lubricant effect

Search Result 226, Processing Time 0.021 seconds

Synthese and Anti-wear Properties of Diol Derivatives Containing Dithiophosphate Group-effect on Main Alkyl Chain and Side Alkyl Chain (Dithiophosphate Group을 함유한 디올유도체의 합성 및 내마모성-말단 알킬기 및 몸체 알킬기의 탄소사슬에 따른 영향)

  • Ko, Kyung-Min;Han, Hye-Rim;Kim, Young-Wun;Kang, Ho-Cheol;Jeong, Noh-Hee
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.405-412
    • /
    • 2018
  • Three types of bis[3-(dialkyloxylphosphorothionyl) thio-2-methylpropanyloxy]alkane (BAPA) drived from alkane diol were synthesized. The principal chain of each BAPA had a different carbon number, i.e., 6, 9, and 11. The three types of synthesized BAPA were compared to zinc dialkyl dithiophosphates (ZDDPs) in terms of abrasion resistance. A four-ball test was conducted to evaluate the anti-abrasion performance of the synthesized BAPA according to the length of the principal carbon chain. Each product was added to an additive at a concentration of 1% of the base oil weight, and the wear scar diameter (WSD) was measured as 0.472, 0.459, and 0.480 mm, respectively. Among the BAPA compounds, dialkyl dithiophosphoric acid (DDP), which is the side chain of bis[methacryloyloxy] nonane (BMOO9), was synthesized by varying the carbon number, i.e., 4, 8, and 12, and subsequently the 4-ball test was carried out. The WSD was determined as 0.537, 0.459, and 0.531 mm, respectively. As a result, it was found that when a side chain is short, a thin film is formed. In contrast, a long side chain hindered the formation of a film, and hence the best result was achieved when the carbon number was 8. As for the ZDDPs, the WSD was determined to be 0.563 mm, when measured under the same conditions. The measurements confirm that the synthesized BAPA compounds are superior to the ZDDPs as abrasion resistance additives.

THE EFFECTS OF SURFACE CONTAMINATION ON THE SHEAR BOND STRENGTH OF COMPOMER

  • Heo, Jeong-Moo;Lee, Su-Jong;Im, Mi-Kyung
    • Proceedings of the KACD Conference
    • /
    • 2001.11a
    • /
    • pp.577-577
    • /
    • 2001
  • The lastest concepts in bonding are "total etch", in which both enamel and dentin are etched with an acid to remove the smear layers, and "wet dentin" in which the dentin is not blown dry but left moist before application of the bonding primer. Ideally, the application of a bonding agent to tooth structure should be insensitive to minor contamination from oral fluids. Clinically contaminations such as saliva, gingival fluid, blood and handpiece lubricant are often encountered by dentists during preparation of a restoration. The aim of this study was to evaluate the effect of contamination by hem-ostatic agents on shear bond strength of compomer restorations. One hundred and ten extracted human maxillary and mandibular molar teeth were collected. The teeth were cleaned from soft tissue remnant and debris and stored in physiologic solution until they were used. Small flat area on dentin of the buccal surface were wet ground serially with 400, 800 and 1200 abrasive paper on automatic polishing machine. The teeth were randomly divided into 11 groups. Each group was conditioned as follows: Group 1 : Dentin surface was not etched and not contaminated by hemostatic agents. Group2 : Dentin surface was not etched but was contaminated by Astringedent (Ultradent product Inc., Utah, U.S.A.). Group3 : Dentin surface was not etched but was contaminated by Bosmin (Jeil Phann, Korea.). Group4 : Dentin surface was not etched but was contaminated by Epri-dent (Epr Industries, NJ, U.S.A.). Group5: Dentin surface was etched and not contaminated by hemostatic agents. Group 6 : Dentin surface was etched and contaminated by Astringedent. Group7 : Dentin surface was etched and contaminated by Bosmin. Group8 : Dentin surface was etched and contaminated by Epri-dent. Group9 : Dentin surface was contaminated by Astringedent. The contaminated surface was rinsed by water and dried by compressed air. Group10 : Dentin surface was contaminated by Bosmin. The contaminated surface was rinsed by water aud dried by compresfed air. Group 11 : Dentin surface was contaminated by Epri-dent. The contaminated surface was rinsed by water and dried by compresfed air. After surface conditioning, F2000 was applicated on the conditoned dentin surface. The teeth were thermocycled in distilled water at $5^{\circ}C\;and\;55^{\circ}C$ for 1000 cycles. The samples were placed on the binder with the bonded compomer-dentin interface parallel to the lmife-edge shearing rod of the Universal testing machine(Zwick 020, Germany) running at a cross head speed of 1.0mmimin. There were no significant differences in shear bond strength between groups 1 and group 3 and 4, but group 2 showed significant decrease in shear bond strength compared with group 1. There were no significant differences in shear bond strength between group 5 and group 7 and 8, but group 6 showed significant decrease in shear bond strength compared with group 5. There were no significant differences in shear bond strength between group 5 and group 9, 10 and 11.

  • PDF

Effect of Differences between Korean Ministry of Environment Standard and ISO Standard on Determination of Petroleum Hydrocarbon Content in Soil (토양오염공정시험기준과 국제표준간의 분석방법 차이가 유류 정량에 미치는 영향)

  • Jung, In-Ho;Lee, Goon-Taek;Lee, Won-Seok;Kim, Yong-Hoon;Kim, Bo-Hyun;Kim, Ji-In;Kim, Bo-Kyong
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.4
    • /
    • pp.63-72
    • /
    • 2012
  • The main objective of this study is to assess the compatibility between Korean ministry of environment (KME) standard and ISO (KS I ISO) standard for the determination of BTEX and TPH content in soil. We carried out comparison analysis for both methods using CRM and matrix spiked samples. In case of GC-MS analysis for BTEX, we got statistically (significance level: 0.05) the same results from KME standard (ES 07600.1) and ISO standard (KS I ISO 15009). However, it showed statistically (significance level: 0.05) different results when TPH was analyzed by KME standard (ES 07552.1) and ISO standard (KS I ISO 16703). To clarify the reason why both methods produced different results for TPH content, we also did some additional experiments in terms of differences in extraction, clean-up and target hydrocarbon range. Extraction with polar and non-polar compounds mixed solvent (acetone+n-heptane) of KS I ISO 16703 showed higher extraction efficiency than with only non polar solvent (dichloromethane) extraction of ES 07552.1 by about 9%. While column type clean-up of KS I ISO 16703 showed the reduction in TPH content between before and after clean-up, batch type of clean-up of ES 07552.1 did not show any changes in TPH content through clean-up process. The target hydrocarbon range of ES 07552.1 and KS I ISO 16703 is $C_8{\sim}C_{40}$ and $C_{10}{\sim}C_{40}$, respectively. From this point of view, kerosene and JP-8 contaminated soil showed higher RPD (relative producibility deviation) values between results by both method than that of lubricant or diesel contaminated soil. The higher content of hydrocarbon ($C_8{\sim}C_{10}$) in kerosene and JP-8 played an important role in increasing RPD values in addition to the effects caused by different solvents and clean-up method. Consequently, it was concluded that both methods (ES 07552.1 and KS I ISO 16703) were not compatible.

Effect of Cooling Water Capacity on the Engine Performance for Small Diesel Engine (냉각수(冷却水) 용량(容量)이 소형(小型) 디젤기관(機關)의 성능(性能)에 미치는 영향(影響))

  • Myung, Byung Soo;Kim, Soung Rai
    • Korean Journal of Agricultural Science
    • /
    • v.13 no.2
    • /
    • pp.265-278
    • /
    • 1986
  • This study was attempted to improve the thermal efficiency of 6 kW water-cooled diesel engine on power tiller. The engine performance tests were conducted to find out the effect of cooling water capacity of 2700cc, 2800cc, 2900cc, 3000cc, 3100cc on power, brake specific fuel consumption (BSFC), torque, temperature of cooling water and lubricating oil and friction losses of the engine with D. C. dynamometer. The results obtained in the study are summarized as follows: 1. The performance of the engine tested was adequated to Korea Industrial Standard but actual economy power was 10% higher than the labeled rated power of the engine. The BSFC of the engine tested 297.8g/kW-h which is belong a little higher level than hreign products. The temperature of cooling water was $101^{\circ}C$ which is higher than SAE standard ($88^{\circ}C$) 2. The friction losses of engine tested was 3.656 kW at 2200 rpm of rated rpm (piston speed 6.97m/sec) and is higher than those of foreign products. 3. When the cooling water capacity was increased from 2700cc to 3100cc the power output of the engine was increased from 6.7 kW to 7.13 kW at the rate of 6.4% and also the torque of the engine was increased from 28.85 N.m to 30.76 N.m at the rate of 6.39%. 4. When the cooling water capacity was increased from 2700cc to 3100cc, the BSFC was decreased 6.9g/kW-h from 310.9g/kW-h to 304.1g/kW-h, and after one half hour operation with full load, the temperature of cooling water was decreased $13^{\circ}C$ from $101^{\circ}C$ to $88^{\circ}C$ and also the temperature of lubricant oil was decreased $6.4^{\circ}C$ from $76.7^{\circ}C$ to $70.4^{\circ}C$. 5. The mechanical efficiency was increased from 70.08% to 71.08% when the cooling water capacity was increased from 2700cc to 3100cc.

  • PDF

Pain Reduction Effects of Lidocaine Gel for Urethral Catheterization : A Systematic Review and Meta-Analysis (요도 카테터 삽입술에서 리도카인 윤활제의 통증 감소 효과 : 체계적 문헌고찰과 메타분석)

  • Hong, Hyun-Jung;Kim, Ga-Eun;Lee, Ha-Nee;Lee, A-Reum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.438-448
    • /
    • 2017
  • This study was a systematic review and meta-analysis that evaluated the results of research on the pain reduction effects of lidocaine gel for urethral catheterization in adults. A literature search was conducted using seven electronic databases, gray literature and other resources based on the guidelines of Preferred Reporting Items for Systematic review and Meta-Analysis (PRISMA). A Risk of Bias (RoB) tool was applied to assess the quality of selected studies. Data were analyzed using the RevMan 5.3.-program. Sixteen randomized controlled trials involving 1904 adults were included. RoB was not observed in the funnel plot. Overall, lidocaine gel was effective for pain reduction during urethral catheterization (Standard Mean Difference[SMD] -0.96;95% CI: -1.43, -0.49). To explore the cause of heterogeneity (I2=95%, p<.001), subgroup analysis was conducted according to three catheter types (urinary catheter, flexible cystoscopy, and rigid cystoscopy) and the SMDs were -0.88 (95% CI:-1.51, -0.26), -0.31 (95% CI:-0.63, 0.01), and -1.93 (95% CI:-2.88, -0.97), respectively. A significant pain reduction effect was observed regardless of gender in urinary catheterization. However, in rigid cystoscopy, a significant pain reduction effect was observed only in male subjects. Pain reduction effects were observed when 10~11ml lidocaine gel was used during rigid cystoscopy and when lubrication was used during urinary catheterization, irrespective of application time. These findings suggest that lidocaine gel is a useful anesthetic lubricant for urinary catheterization and rigid cystoscopy in male adults.

THE EFFECTS OF SURFACE CONTAMINATION BY HEMOSTATIC AGENTS ON THE SHEAR BOND STRENGTH OF COMPOMER (지혈제 오염이 콤포머의 전단결합강도에 미치는 영향)

  • Heo, Jeong-Moo;Kwak, Ju-Seog;Lee, Hwang;Lee, Su-Jong;Im, Mi-Kyung
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.2
    • /
    • pp.150-157
    • /
    • 2002
  • One of the latest concepts in bonding are "total etch", in which both enamel and dentin are etched with an acid to remove the smear layers, and "wet dentin" in which the dentin is not dry but left moist before application of the bonding primer Ideally the application of a bonding agent to tooth structure should be insensitive to minor contamination from oral fluids. Clinically, contaminations such as saliva, gingival fluid, blood and handpiece lubricant are often encountered by dentists during cavity preparation. The aim of this study was to evaluate the effect of contamination by hemostatic agents on shear bond strength of compomer restorations. One hundred and ten extracted human maxillary and mandibular molar teeth were collected. The teeth were removed soft tissue remnant and debris and stored in physiologic solution until they were used. Small flat area on dentin of the buccal surface were wet ground serially with 400, 800 and 1200 abrasive papers on automatic polishing machine. The teeth were randomly divided into 11 groups. Each group was conditioned as follows : Group 1: Dentin surface was not etched and not contaminated by hemostatic agents. Group 2: Dentin surface was not etched but was contaminated by Astringedent$^{\circledR}$(Ultradent product Inc., Utah, U.S.A.) Group 3: Dentin surface was not etched but was contaminated by Bosmin$^{\circledR}$(Jeil Pharm, Korea.). Group 4: Dentin surface was not etched but was contaminated by Epri-dent$^{\circledR}$(Epr Industries, NJ, U.S.A.). Group 5: Dentin surface was etched and not contaminated by hemostatic agents. Group 6: Dentin sorface was etched and contaminated by Astringedent$^{\circledR}$. Group 7 : Dentin surface was etched and contaminated by Bosmin$^{\circledR}$. Group 8: Dentin surface was etched and contaminated by Epri-dent$^{\circledR}$. Group 9: Dentin surface was contaminated by Astringedent$^{\circledR}$. The contaminated surface was rinsed by water and dried by compressed air. Group 10: Dentin surface was contaminated by Bosmin$^{\circledR}$. The contaminated surface was rinsed by water and dried by compressed air. Group 11 : Dentin surface was contaminated by Epri-dent$^{\circledR}$. The contaminated surface was rinsed by water and dried by compressed air. After surface conditioning, F2000$^{\circledR}$ was applicated on the conditoned dentin surface The teeth were thermocycled in distilled water at 5$^{\circ}C$ and 55$^{\circ}C$ for 1,000 cycles. The samples were placed on the binder with the bonded compomer-dentin interface parallel to the knife-edge shearing rod of the Universal Testing Machine(Zwick Z020, Zwick Co., Germany) running at a cross head speed or 1.0 mm/min. Group 2 showed significant decrease in shear bond strength compared with group 1 and group 6 showed significant decrease in shear bond strength compared with group 5. There were no significant differences in shear bond strength between group 5 and group 9, 10 and 11.