• Title/Summary/Keyword: Lubricant effect

Search Result 226, Processing Time 0.028 seconds

NUMERICAL STUDY ON HYDRODYNAMIC LUBRICATION CHARACTERISTICS OF MICRO-DIMPLE TEXTURED SURFACES (미세 딤플 가공 표면의 수력학적 윤활특성에 대한 수치해석 연구)

  • Hong, S.H.;Lee, J.B.;Cho, M.H.;Lee, S.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.363-367
    • /
    • 2009
  • Recently, the manufacturing of micro-cavity by means of laser surface texturing (LST) technique and low friction study by the LST have been in great progress. Most of current works have been dealing with the effect of cavity on friction and wear. The main objective of the present study was to investigate numerically two-dimensional lubrication characteristics of micro-dimple shapes fabricated on solid surfaces, and this study utilized the commercial CFD code (Fluent V.6.3). For the evaluation, preliminary simulation was conducted and numerical predictions were compared with the analytic solution obtained from the Reynolds's equation. Mainly, the present study investigated the influence of dimple depth, pattern shapes, and film thickness on lubrication characteristics related to the reduction of friction. It is found that the existence of micro-dimpled surface makes it possible to substantially reduce the friction forces exerted on the surfaces. In particular, substantial decrease in shear stresses was observed as the lubricant film thickness decreases. For instance, in the case of the film thickness of 0.01 mm, the estimated shear stress decreases up to about 40%. It indicates that the film thickness would be important factor in designing the micro-dimpled surfaces. Furthermore, it was observed that such a optimum dimple depth would be present because the dimple depth larger than the optimum value did no longer affect the reduction in shear stresses.

  • PDF

Human Health Risk Assessment Strategy to Evaluate Non-carcinogenic Adverse Health Effect from Total Petroleum Hydrocarbon at POL-Contaminated Sites in Korea (국내 유류오염지역에서의 석유계총탄화수소에 의한 비발암 인체위해성평가 전략)

  • Park, In-Sun;Park, Jae-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.4
    • /
    • pp.10-22
    • /
    • 2011
  • Human health risk assessment for petroleum, oil and lubricant (POL) contaminated sites is challenging as total petroleum hydrocarbon (TPH) is not a single compound but rather a mixture of numerous substances. To address this concern, several TPH fractionation approaches have been proposed and used as an effective management tool for the POL-contaminated sites in many countries. In Korea, there are also recognized needs to establish a reliable and cost-effective human health risk assessment strategy based on the TPH fractionation method. In order to satisfy the social and institutional demand, this study suggested that the comprehensive risk assessment strategy based on a newly modified TPH fractionation method with 10 fractions, the Korean Standard Test Method (KSTM)-based analytical protocol and a stepwise risk assessment framework should be introduced into the domestic contaminated land management system. Under the proposed strategy, POL-contaminated sites can be effectively managed in terms of human health protection, and remedial cost and time can be determined reasonably. In addition, more researches required to increase our understanding of environmental risks and improve the domestic management system were proposed.

Analysis of Frequency Characteristics of Writing Instruments Due to Friction (필기구 마찰의 주파수 특성 분석)

  • Shin, JaeUn;Park, JinHwak;Lee, YoungZe
    • Tribology and Lubricants
    • /
    • v.33 no.4
    • /
    • pp.148-152
    • /
    • 2017
  • The feel of writing is important to customers when they buy smart devices with stylus such as smartphones and tablet computers. With an aim to reproduce the tactile sensibility of writing instruments when people write on the glass display using a stylus, this study focuses on the frequency characteristics of writing instruments that can describe the vibrations of writing instruments sliding over counter surfaces. In addition, this study includes the effect of various factors influencing the friction of writing instruments such as lubricant, nib material, and contact type. We perform sliding experiments with six types of writing instruments and a sheet of paper to understand the relation between the friction conditions of the nib and the frequency characteristics. As this research focuses on the tactile perception of human skin when people use a writing instrument, the analysis of frequency characteristics is performed in the perceptible frequency range of mechanoreceptors in the human skin. As a result, three types of frequency characteristics are identified. Low frequency peaks are observed for a metal nib with ink; high frequency peaks are observed for a nib without ink; and, middle frequency peaks with a wide range of distribution occurs for fabric nibs with ink. Therefore, to implement the proper feel of writing, at least three types of vibrations have to be made.

Brass fillers in friction composite materials: Tribological and brake squeal characterization for suitable effect evaluation

  • Kchaou, Mohamed;Sellami, Amira;Abu Bakar, Abd. Rahim;Lazim, Ahmad Razimi Mat;Elleuch, Riadh;Kumar, Senthil
    • Steel and Composite Structures
    • /
    • v.19 no.4
    • /
    • pp.939-952
    • /
    • 2015
  • In this paper, brake pad performance of two organic matrix composites namely, Sample 1 (contains no brass filler) and Sample 2 (contains 1.5% brass filler), is studied based on tribological and squeal noise behavior. In the first stage, a pin-on-disc tribometer is used to evaluate the frictional behavior of the two pads. On the following stage, these pads are tested on squeal noise occurrence using a drag-type brake dynamometer. From the two type of tests, the results show that; (i) brass fillers play a dual role; firstly as reinforcing element of the brake pad providing primary contact sites, and secondly as solid lubricant by contributing to the formation of a layer of granular material providing velocity accommodation between the pad and the disc; (ii) brass fillers contribute to friction force stabilization and smooth sliding behavior; (iii) the presence of small weight quantity of brass filler strongly contributes to squeal occurrences; (iv) there is close correlation between pin-on-disc tribometer and brake dynamometer tests in terms of tribological aspect.

An Experimental Study on the Power Transmission Efficiency and Frictional Noise of $MoS_2$-Bonded-Film Coated Reduction Gears (접착형 $MoS_2$고체윤활피막이 코팅된 감속기의 동력전달효율과 소음 특성에 관한 실험적 고찰)

  • 윤의성;공호성;한홍구;오재응
    • Tribology and Lubricants
    • /
    • v.12 no.3
    • /
    • pp.107-114
    • /
    • 1996
  • MoS$_{2}$ bonded film was applied to reduction gears, and its lubricating properties were experimentally evaluated in terms of the power transmission efficiency and the frictional noise with a dynamo-typed gear test rig. Tests were performed in both oil lubrication and dry condition where the rotating velocity and loading torque were varied. In dry condition, MoS$_{2}$ bonded films effected the power transmission efficiency to increase about 5%, and the frictional noise level to decrease about 6 dB under the test operating conditions. It well proved that MoS$_{2}$ bonded films were a very effective solid lubricant for reduction gears. In oil lubricating conditions, the frictional properties of the coated gears were mainly governed by the lubricating oil, and lubricating effects of MoS2 bonded films were not evident. The result suggested that lubricating effect of MoS$_{2}$ bonded films would be limited to prevent a damage of reduction gears in the initial run when they were used in oil lubrication conditions.

Development of Analysis Program for Multi-Pass Wet Wire Drawing Process and Its Application (습식 다단 인발공정 해석 프로그램 개발 밀 적용)

  • 이상곤;김민안;김병민;조형호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.9
    • /
    • pp.126-134
    • /
    • 2003
  • This paper investigates the multi-pass wet wire drawing process considering the slip between the wire and the capstan. The production of fine wire through multi-pass wet wire drawing process would be impossible without backtension. The backtension is affected by many process parameters, such as slip, dies reduction, coiling number of wire at the capstan, machine reduction, characteristic of lubricant etc. Up to date, die design and dies pass schedule of multi-pass wet wire drawing process have been performed by trial and error of expert in the industrial field. In this study, an analysis program which can perform the analysis and considering the effect of slip at each capstan was developed. The effects of many important parameters (drawing force, backtension force, needed power, slip rate, slip velocity rate etc.) on multi-pass wet wire drawing process can be predicted by this developed program. It is possible to obtain the important basic data which can be used in the pass schedule of multi-pass wet wire drawing process by using this developed program.

Effect of Suction Temperature and Compressor Frequency on Oil Circulation Ratio in a $CO_2$ Refrigeration System ($CO_2$ 냉동시스템에서 압축기의 흡입온도와 운전주파수가 오일 순환량에 미치는 영향)

  • Kim, Kyung-Jae;Lee, Ik-Soo;Kang, Byung-Ha;Kim, Suk-Hyun
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.893-898
    • /
    • 2009
  • The quantity of discharged oil from a compressor is one of the most important issues for proper operation of refrigeration system. If the oil is increased in the system not only pressure drop is increased in other components, such as evaporator and gas cooler but also heat transfer coefficient in the heat exchangers is decreased. In addition, the lack of oil in the compressor may cause a critical of the system failure. In this study, one stage single rotary compressor is used for measuring oil circulation ratio(OCR). Carbon dioxide and PAG oil are used as refrigerant and lubricant. Using a U-tube densimeter, mixture density is measured. Characteristics of oil circulation ratio have been investigated for $CO_2$ rotary compressor in the range of operation frequency 45 Hz to 63 Hz and the suction temperature range of $0^{\circ}C$ to $15^{\circ}C$. The results obtained indicate that the oil circulation ratio is increased as the suction temperature or compressor operating frequency is increased.

  • PDF

Role of Charges of the Surface-grafted Polymer Chains for Aqueous Lubrication at a Nonpolar Interface

  • Ron, Troels;Madsen, Jan Busk;Nikorgeorgos, Nikolaos;Lee, Seunghwan
    • Tribology and Lubricants
    • /
    • v.30 no.5
    • /
    • pp.247-255
    • /
    • 2014
  • Charged polymer chains, i.e., polyelectrolytes, are known to show superior aqueous lubricating properties compared to those of neutral polymer chains, especially in brush conformation. This is primarily because of the incorporation of a large amount of counterions within the polymer layers and the consequently increased osmotic pressure. However, this effect is active only when the polymer chains remain immobilized even under tribostress, which is not realistic for high-contact pressure tribological applications, especially when they are irreversibly immobilized on tribopair surfaces. In contrast, with free polymers, which can be included as surface-active additives in the base lubricant (water), long-term lubricating performance based on "self-healing" properties is readily expected. In order to assess whether the superior aqueous lubricating properties of polyelectrolyte chains are valid for free polymers too, this study reviews recent studies on the tribological properties of many charged biopolymer and synthetic copolymers at a nonpolar, hydrophobic interface. In contrast to the irreversibly immobilized polyelectrolyte chains, free polyelectrolyte chains show inferior aqueous lubricating properties compared to their neutral counterparts owing to charge accumulation and the consequently impeded surface adsorption on the nonpolar surface. Nevertheless, bovine submaxillary mucin (BSM), a representative biopolymer, shows a sufficiently effective surface adsorption and aqueous lubricating capabilities even at neutral pH without losing the polyanionic characteristics.

Lubrication Characteristics of Surface Textured Parallel Thrust Bearing with Ellipsoidal Dimples (타원체 딤플로 Texturing한 평행 스러스트 베어링의 윤활특성)

  • Park, Tae-Jo;Kim, Min-Gyu
    • Tribology and Lubricants
    • /
    • v.32 no.5
    • /
    • pp.147-153
    • /
    • 2016
  • Friction reduction between machine components is important for improving their efficiency and lifespan. In recent years, surface texturing has received considerable attention as a viable means to enhance the efficiency and tribological performance of highly sliding mechanical components such as parallel thrust bearings, mechanical face seals, and piston rings. In this study, we perform lubrication analysis to investigate the effect of dimple shapes and orientations on the lubrication characteristics of a surface textured parallel thrust bearing. Numerical analysis involves solving the continuity and Navier-Stokes equations using a commercial computational fluid dynamics (CFD) code, FLUENT. We use dimples consisting of hemispherical and different semiellipsoidal orientations for simulation. We compare pressure and streamline distributions, load capacity, friction force, and leakage flowrate for different numbers of dimples and orientations. We find that the dimple shapes, orientations, and their numbers starting from an inlet influence the lubrication characteristics. The results show that partial texturing of the bearing inlet region, and the ellipsoidal dimples with the major axis aligned along the lubricant flow direction exhibit the best lubrication characteristics in terms of higher load capacity and lower friction. The results can be used in the design of optimum dimple characteristics for parallel thrust bearings, for which further research is required.

A Study on the Formation of Functionally Composite Layer on Al Alloy Surface by Plasma Transferred Arc Overlaying Process (Plasma Transferred Arc 오버레이법에 의한 Al 합금 표면층의 복합기능화에 관한 연구)

  • 임병수;황선효;서창제
    • Journal of Welding and Joining
    • /
    • v.17 no.5
    • /
    • pp.107-115
    • /
    • 1999
  • The objective of this research was to study the formation of the thick hardened layer with the addition of metal powder(Cu) and ceramics powders(TiC) on the aluminum 5083 alloys by plasma transferred arc process(PTA process) and to characterize the effect of overlaying conditions on the overlaid layer formation. This was followed by investigating the microstructures of the overlaid layers and mechanical properties such as hardness and wear resistance. The overlaid layer containing copper powder was alloyed and intermetallic compound($CuAl_2$) was formed. The overlaid layers with high melting point TiC powders, however, did not react with base metal. Wear resistance of the alloyed layer was remarkably improved by the formation of $CuAl_2$, precipitate phase, which prevented wear of base aluminum alloys and at higher wear speed, accelerated sliding of the counter part. Wear resistance of the composite layer was also remarkably improved because TiC powder act as a load barring element and Fe debris fragments detached from the counter part act as a solid lubricant on the contact surface.

  • PDF