• Title/Summary/Keyword: Lower trunk strengthening

Search Result 24, Processing Time 0.019 seconds

Case report for the effects of lower trunk strengthening exercise on athetosis children with cerebral palsy due to kernicterus (핵황달에 의한 무정위형 뇌성마비 아동의 하부체간 근력강화 운동 효과 사례보고)

  • Kim, Mi-Kyoung;Goo, Bong-Oh
    • PNF and Movement
    • /
    • v.7 no.4
    • /
    • pp.25-30
    • /
    • 2009
  • Purpose : The purpose of this study was to examine the effects of lower trunk muscles strengthening in athetosis children with cerebral palsy. Methods : One children with cerebral palsy participated in the case study. The age was 6 year. GMFM (gross motor function measure) was used to measure the functional movement ability. Lower trunk strengthening exercise were performed 3 times a week for 12 months. The measurements were taken before and after the exercise program. Results : In this study, the lower trunk strengthening exercise program was effective for gross motor functions. The children with athetosis type showed improvement in the Walking, Running & Jumping in GMFM. Conclusion : Therefore, the lower trunk strengthening exercise program was effective for the gross motor in athetosis type of cerebral palsy.

  • PDF

Comparison of Muscle Activities of Trunk and Lower Limb during Bow and Squat Exercises

  • Shon, Ji-won;Lim, Hyung-won
    • The Journal of Korean Physical Therapy
    • /
    • v.28 no.2
    • /
    • pp.95-100
    • /
    • 2016
  • Purpose: The purposes of this study were to examine muscle activities of trunk and lower limb during squat and 108 bows exercises and to provide objective data for establishing a training method for improving muscle strength of trunk and lower limb. Methods: Twenty normal healthy subjects participated in this study. Each exercise was divided into five periods. Muscle activities of trunk and lower limb in each period of both 108 bows and squat exercises were measured and analyzed by independent t-test. Results: In starting, mid-flexion, mid-extension, and end period muscle activities obtained from 108 bows exercise were significantly higher than those from squat exercise. However, in the final flexion period, muscle activities of multifidus, elector spinae, rectus femoris, biceps femoris, and tibialis anterior from squat exercise were significantly higher than those from bow exercise. Conclusion: In this study, high muscle activities in most muscles of trunk and lower limb were observed from all periods of 108 bows exercise except the final flexion period. Therefore, it is likely that 108 bows exercise rather than squat exercise is more suitable for high strength exercise to improve muscle strength of trunk and lower limb and thus will be applicable for strengthening muscles of trunk and lower limb of patients.

Effects of Transversus Abdominal Muscle Stabilization Exercise to Spinal Segment Motion on Trunk Flexion-Extension (복횡근 강화운동이 체간 신전-굴곡 시 척추 분절 운동에 미치는 영향)

  • Kim, Suhn-Yeop;Baek, In-Hyeub
    • Physical Therapy Korea
    • /
    • v.10 no.1
    • /
    • pp.63-76
    • /
    • 2003
  • This research was performed to compare spinal segment motion angle between low back pain (LBP) group and painless group during trunk flexion-extension and to investigate the effect of transversus abdominis strengthening exercise on spinal segment motion angle in LBP group. Nine subjects with LBP and ten subjects without LBP participated. Transversus abdominis strengthening exercise was performed in LBP group for three weeks, and spinal segment motion angles were compared before and after the exercise performance. Spinal segment motion angles were measured both in sitting and standing position. Results were as followed: 1) Subjects' average age was 24.79 years, height was 167.84 cm, and weight was 59.95 kg. 2) Spinal segment motion angle of T10/l1 was significantly higher in LBP group compared with painless group (p<.05) in sitting position during trunk flexion-extension. 3) In sitting position, whereas entire lumbar segment motion angles were lower in LBP group compared with painless group (p<.05), angle of L4/5 was higher in LBP group compared with painless group (p<.05). 4) There was no significant difference in thoracic segment motion angle in standing position. 5) After three weeks of transversus abdominis strengthening exercise, thoracic segment motion angle increased both in sitting and standing position (p<.05). 6) In painless group, there was no significant difference in entire spinal segment motion angles in sitting and standing position (p>.05). When spinal segment motion angles were compared between sitting and standing position, there were slight differences. In sitting position, there was no difference in spinal segment motion angle between LBP group and painless group while hip joint motion angle and sacral inclination angle of LBP group was lower than those of painless group (p<.05). In standing position, lumbar segment motion angle was significantly lower in LBP group than that of painless group. Transversus abdominis strengthening exercise influenced thoracic segment motion angle more significantly than lumbar segment motion angle.

  • PDF

Effects of Lumbar Stabilization Exercise on the Strength, Range of Motion and Pain

  • Kim, Chihwan;Cho, Sunghak
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.11 no.4
    • /
    • pp.2229-2236
    • /
    • 2020
  • Background: Few comparative studies have been conducted on strengthening the anterior and posterior muscles of the trunk via lumbar stabilization exercises. Objectives: To compare the effects of forward leaning exercise and supine bridging exercise in stability exercise. Design: Randomized controlled clinical trial (single blind). Methods: Thirty subjects with spondylolisthesis were participated in this study. Fifteen subjects performed the bridging exercises and fifteen subjects performed the forward leaning exercises. Each exercise was held for ten seconds per repetition, and four repetitions were considered one sub-session. A total of four sub-sessions were performed in one full exercise session. The full exercise session required thirty minutes, including rest time. Trunk strength and range of motion and Oswestry disability index were measured. Results: Two weeks later, trunk flexion strength and trunk extension range of motion were significantly increased in the forward leaning exercise group than in the supine bridging group, trunk extension strength were significantly increased in the supine bridging exercise group than in the forward leaning group. After two weeks, the pain score was significantly lower in the forward leaning exercise group than in the supine bridging group. Conclusion: This study has shown that stabilization exercises are effective in increasing range of motion and strength in spondylolisthesis subjects. It was especially confirmed that the method of strengthening the anterior muscles of the trunk is more effective than the standard stabilization exercise method.

The Effect of Rehabilitation Training Programs on the Kinetic and Kinematic Parameters During Sit-To-Stand in Chronic Stroke Patients (만성편마비 환자의 재활 운동 유형이 일어서기 동작의 운동학 및 운동역학적 변인에 미치는 영향)

  • Yu, Yeon-Joo;Yoon, Te-Jin;Eun, Seon-Deok
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.121-134
    • /
    • 2006
  • The purpose of this study was to analyze the effect of different types of rehabilitation training program on the kinetic and kinematic parameters during sit-to-stand movement(STS) in chronic stroke patients. Two groups of hemiparetic patients, experimental and control, participated in the study. The experimental group participated in a 10-week training program (three sessions/wk, $1{\sim}1.5\;hr/session$) consisting of a warm-up, aerobic exercises, lower extremity strengthening. and a cool-down. The control group participated in an aerobic exercise. Three dimensional kinematic analysis and force platform; were used to analyze the duration of STS, lower extremity angle, and weight bearing ability. The experimental group which had more strength of lower extremity displayed decrease in duration of STS. However, the control group showed increases in duration during sit-to-stand movement. The control group flexed their trunk more than the group did Therefore, it took more time to extend their trunk during STS. The duration in sit-to-stand was affected by the strength of lower extremity and the angle of trunk movement. The angles of ankle and knee joint had an influenced on duration of STS. The post experimental group performed with their feet near the front leg of the chair during sit-to-stand, therefore the duration was decreased. The repetitive sit-to-stand movements as a resistance exercise was effective to hemiparetic patients in learning mechanism of sit-to-stand. The control group showed decreased differences in the vertical ground reaction forces between paretic and non-paretic limbs. Their training program included strengthening exercise that may help improving weight bearing ability. The control group showed increases in the center of pressure in the anteroposterior and mediolateral displacement. This means that the stability of movement was low in the control group. Their training program which combined aerobic and strengthening exercises that are more effective to improve the stability of movement.

A Study on Strengthening Exercise for Stroke Patients through Comparison of Literature between Domestic and Foreign (국내·외 문헌적 비교를 통한 뇌졸중 환자에 대한 근력강화 운동의 고찰연구)

  • Oh, Taeyoung
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.7 no.1
    • /
    • pp.113-124
    • /
    • 2019
  • Purpose : The purpose of this study is to investigate the effect of strengthening program for improving the muscle strength and body function in rehabilitation of patients with stroke Methods : We found the 15 precedent studies at online portal site of "Korea education and Research information service" and found 5 precedent studies at "Pubmed". We analyzed and describe the total 19 studies involving national and international research. Results : The strengthening exercise was adapted to lower extremities and trunk muscle of participants and the isokinetic (concentric and eccentric) exercise was most of exercise type and then manual isometric exercise, functional activities, progressive task oriented resistance exercise, PNF pattern exercise was following. The studies reported that the strengthening program increased target muscle strength and improved balance capacity and walking function for the participants positively. Conclusion : Conclusionally the several strengthening program can be the intervention to increase the muscle strength without increasing spasticity for patients with stroke. We think that the strengthening of lower extremities an improve balance capacity and walking ability and it can use the intervention to change the quality of life in patients with stroke. More than 3weeks strength program might be effectiveness, in case of acute patients with stroke, the improving of muscle strength is available but need to study for improving balance and walking capacity more in the future.

Effect of Trunk Inclination Angles on Trunk Muscle Activity and Subjective Difficulties During Supine Bridge Exercise with a Suspension Device

  • Kim, Jwa-Jun;Park, Se-Yeon
    • PNF and Movement
    • /
    • v.18 no.3
    • /
    • pp.315-321
    • /
    • 2020
  • Purpose: Recent studies have indicated that applying different inclination angles and suspension devices could be a useful way of performing exercises that include the co-activation of the trunk muscles. Present study was to examine the influences of changes in the inclination angle during trunk muscle activity while engaging in a bridge exercise with a suspension device. Methods: 18 healthy, physically active male volunteers completed three trunk inclination angles (15°, 30°, and 45°) for bridge exercise variations. The surface electromyography responses of the rectus abdominis, internal oblique (IO), erector spinae (ES), and rectus femoris (RF), as well as the subjective difficulty (Borg RPE score), were investigated during these bridge exercises. Results: The bridge with a 45° inclination angle suspension significantly increased the muscular activities of the RA and RF and increased the Borg RPE scores (p<0.05). The bridge with a 15° suspension significantly elevated the ES activities when compared to the other conditions. Conclusion: The present study demonstrated that a higher inclination angle could not activate the overall trunk muscles during the bridge exercise. The RA and RF produced greater activation during the bridge exercise with the higher inclination angle. On the other hand, the activities of the erector spine were greater during the bridge exercise with the lower inclination angle. The present study suggests that applying a low trunk inclination angle for the supine bridge exercise is suitable for activating the erector spine muscles.

The Study of Strategy for Energy Dissipation During Drop Landing from Different Heights (드롭랜딩 시 높이 변화에 따른 인체 분절의 충격흡수 전략에 관한 연구)

  • Cho, Joon-Haeng;Koh, Young-Chul;Lee, Dae-Yeon;Kim, Kyoung-Hun
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.3
    • /
    • pp.315-324
    • /
    • 2012
  • The purpose of current study was to investigate the effects of the heights on the lower extremities, torso and neck segments for energy dissipation during single-leg drop landing from different heights. Twenty eight young healthy male subjects(age: $23.21{\pm}1.66yr$, height: $176.03{\pm}4.22cm$, weight: $68.93{\pm}5.36kg$) were participated in this study. The subjects performed the single-leg drop landing from the various height(30, 45 & 60 cm). Force plates and motion-capture system were used to capture ground reaction force and kinematics data, respectively. The results were as follows. First, the ROM at the ankle, knee, hip and trunk was increased with the increased heights but the ROM at the neck was increased in the 60cm. Second, the angular velocity, moment and eccentric work at the ankle, knee, hip, trunk, and neck was increased with the increased heights. Third, the contribution to total work at the knee joint was not significantly different, while the ankle joint rate was decreased and hip and neck rate was increased in the 60cm, and trunk rate was increased with the increased heights. Lastly, the increase in landing height was able to augment the level of energy dissipation not only at the lower extremities but also at the trunk and neck. The findings showed that drop landing affect trunk and neck with lower extremity joints. Therefore, we need to consider that trunk and neck strengthening including stability should be added to reduce sports injury during prevention training.

Immediate Effects of Appling Resistance in the Bridge Exercise on Muscle Activity in the Trunk and Lower Extremities

  • Sun Min Kim;Gku Bin Oh;Gang Mi Youn;Ji Hyun Kim;Ki Hun Cho
    • Journal of Korean Physical Therapy Science
    • /
    • v.30 no.3
    • /
    • pp.1-13
    • /
    • 2023
  • Background: The bridge exercise prevents repeated damage to the tissues around the spine by reducing stimulus transmission to the ligaments and joint capsules, thereby alleviating back pain. It also contributes to strengthening the muscles of the lower extremities. Design: A Single Subject experience design. Methods: This study was conducted on 28 healthy adults in their 20s to 30s and conducted at St. Mary's Hospital in C City from May to July 2021. Four types of bridge exercise were performed in this study: the normal bridge exercise and bridge exercises with 0.5%, 1%, or 1.5% body weight resistance applied on the pelvis through manual resistance during the bridge exercise and to determine the effect of resistance applied in the bridge exercise on the activation of the trunk and lower extremities muscles. Results:This study showed that the muscle activity of the trunk and lower extremities improved significantly in response to stronger resistance when manual resistance equivalent to 0.5%, 1%, or 1.5% of body weight was applied during the bridge exercise compared to when the normal bridge exercise was performed. Conclusion: This study shows that manual resistance can be applied as an effective method of bridge exercise since muscle activity in the trunk and lower extremities increases when manual resistance causing isometric contraction is applied.

Effect of Backward Versus Forward Lunge Exercises on Trunk Muscle Activities in Healthy Participants

  • Song, Jae-Keun;Yoo, Won-Gyu
    • Physical Therapy Korea
    • /
    • v.28 no.4
    • /
    • pp.273-279
    • /
    • 2021
  • Background: Lunge exercises are lower extremity rehabilitation and strengthening exercises for patients and athletes. Most studies have shown the effectiveness of the forward and backward lunge exercises for treating patellofemoral pain and anterior cruciate ligament injuries (by increasing lower extremity muscle activity) and improving kinematics. Objects: However, it is not known how the two different lunge movements affect trunk muscle activities in healthy individuals. The purpose of this study was to investigate the electromyographic activity of the rectus abdominis and erector spinae muscles during forward and backward lunge exercises in healthy participants. Methods: Twelve healthy participants were recruited. Electromyographic activity of the rectus abdominis and erector spinae was recorded using surface electrodes during forward and backward lunges, and subsequently normalized to the respective reference voluntary isometric contractions of each muscle. Results: Activity of the erector spinae was significantly higher than that of the rectus abdominis during all stages of the backward lunge (p < 0.05). The activity of the erector spinae was significantly greater during the backward than forward lunge at all stages (p < 0.05). Conclusion: Backward lunging is better able to enhance trunk motor control and activate the erector spinae muscles.