• Title/Summary/Keyword: Lower Taehwa river

Search Result 6, Processing Time 0.022 seconds

Characteristics of Red Tide Blooms in the Lower reaches of Taehwa River (태화강 하류의 적조발생 특성)

  • Cho, Hong-Je;Yoon, Yeong-Bae;Kang, Ho-Seon;Yoon, Sung-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.453-462
    • /
    • 2011
  • This study was analyzed to determine the cause of red tide at 10 and 30 days antecedental rainfall, stage and discharge in the Taehwa River, tidal data of Ulsan port, also, it was analyzed variation of red tide population, salinity, BOD, COD, T-N, T-P at S1, S2 each point. Most of the red tide in the Taehwa River occurred by provision of proper nutrients with antecedent, the proximity between discharge and low-flow capacity, and stage and discharge of stabilized condition after the sea water was inflowed by maximum tide difference. Red tide population is not nearly related to the change of salinity, the Taehwa River seems specific features of Non-coastal rivers downstream, because red tide was occurred when salinity quite low-end condition.

Winter bird monitoring of lower Taehwa river in the Ulsan city (울산 태화강하류의 겨울철 조류 모니터링 연구)

  • Lee, Jong-Nam
    • Journal of Wetlands Research
    • /
    • v.7 no.4
    • /
    • pp.81-88
    • /
    • 2005
  • A total of 14,034 individual birds, 11 orders 21 families, were observed during the four year study periods from 2001 to 2004 winter season on the lower Taehwa river. In 2001 the species was the highest with 48, and then the lowest with 31 in 2004. Population was peaked with 11,991 in 2002, but the lowest number was 3,476 in 2004. The birds recorded more than 5% relative dominance were Aythya ferina (6,946), Corvus frugilegus (1,643), Larus ridibundus (1,193) and Larus crassirostris (805), and their total numbers were 10,587 individuals, 75.4% of the total individuals. For wintering birds protection on Taehwa river, it is necessary to make feeding site, shelter and buffer zone along the river. Establishment of wall or forest for absorbing sound and light should be created between road and flood plain. Besides these artificial facilities, the public awareness of citizens will be the most important thing to protect birds. Moreover, it is necessary to prepare conservation and management measures for the river bed where Taehwa river meets Dong river where the birds used bamboo forest($2{\times}0.1km^2$) for breeding and roosting.

  • PDF

The Change of Vegetation Environment since middle-late Holocene in the lower reaches of Taehwa River, Taehwa-dong, Ulsan-si, Korea (울산 태화강 하류 태화동 홀로세 중·후기 식생환경 변화)

  • Kim, HyeRyung;Yoon, Soon-Ock;Hwang, Sangill
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.2
    • /
    • pp.1-13
    • /
    • 2016
  • This study analyzed pollen compositions in archaeological site on alluvial plain of Taehwa River, Taehwa-dong, Ulsan-si vegetational and environmental change during 6,200~3,000 yr BP. The results consist upward of Pollen Zone I (Inner Bay environment), Pollen Zone II (Quercus-Alnus stage) and Pollen Zone III (Alnus stage). The pollen grains of Fagopyrum and reddish gray silty horizon including artifacts of the Bronze Age suggest that there was cultivation on dry-field around the study site, although it is not sure that there was paddy-field cultivation.

A Study on Effects of Hydraulic Structure on River Environment(II) : Water Quality and Ecological Characteristics (수공구조물이 하천환경에 미치는 영향에 관한 연구(II) : 수질 및 생태학적특성)

  • 안승섭;최윤영;이수식
    • Journal of Environmental Science International
    • /
    • v.11 no.4
    • /
    • pp.309-317
    • /
    • 2002
  • In this study, water protection reservoir is selected as the target which is located at the estuary of Taehwa river to analyze and examine the effects of hydraulic structure on river environment. This study examined the water quality variation characteristics among many effects of hydraulic structure on river environment before and after removal of the sediment protection reservoir when low flow is yielded. This study aims at the definition of factors which cause the change of ecological environment of river due to the effects of the sediment protection reservoir, and the proposal of the direction of environmental friendly river space development through the comparison of stream variation conditions(depth, velocity, and etc.) and riverbed variation characteristics with ecological depth condition of Taehwa-river's channel for each representative species of fish and examination those. Firstly, from the examination result of water quality when low flow is yielded before and after removal of the sediment protection reservoir for problems about water quality of river due to flow amount decrease in river, it is found that DO decreases about 0.78~0.86ppm at the lower stream of Myeongchon-gyo, and BOD decreases about 0.06~0.24ppm from right upper stream to the direction of estuary when the sediment protection reservoir is removed. It is known from the above that there is some improvement of water quality from the lower stream of Taehwa-gyo to the estuary in case of removal the sediment protection reservoir. Nextly, it is thought that the effects on ecosystem due to water depth and draw down in channel is not serious on the basis of the examination of water quality analysis result according to removal of sediment protection reservoir and hydraulic depths for reservation of ecosystem, these are 10~40cm for breeding season, 10~50cm for fry period, and 10~100cm for adult period of the representative species of fish in Korea.

Dispersal of potential habitat of non-native species tilapia(Oreochromis spp.) inhabiting rivers in Korea (국내 하천에 서식하는 외래종 틸라피아(tilapia)의 잠재적 서식처 확산)

  • Ju Hyoun Wang;Jung Soo Han;Jun Kil Choi;Hwang Goo Lee
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.2
    • /
    • pp.101-108
    • /
    • 2023
  • Recently, in relation to climate change, many studies have been conducted to predict the potential habitat area and distribution range of tilapia and the suitability of habitat for each species. Most tilapia are tropical fish that cannot survive at water temperatures below 10 to 12℃, although some tilapia can survive at 6 to 8℃. This study predicted habitable areas and the possibility of spreading of habitat ranges of tilapia (Oreochromis niloticus and Oreochromis aureus) known to inhabit domestic streams. Due to climate change, it was found that habitats in the Geum River, Mangyeong River, Dongjin River, Seomjin River, Taehwa River, Hyeongsan River, and the flowing in East Sea were possible by 2050. In addition, it was confirmed that tilapia could inhabit the preferred lentic ecosystem such as Tamjin Lake, Naju Lake, Juam Lake, Sangsa Lake, Jinyang Lake, Junam Reservoir, and Hoedong Reservoir. In particular, in the case of tilapia, which lives in tributaries of the Geumho River, Dalseo Stream, and the Nakdong River, its range of habitat is expected to expand to the middle and lower of the Nakdong River system. Therefore, it is judged that it is necessary to prepare physical and institutional management measures to prevent the spread of the local population where tilapia currently inhabits and to prevent introduction to new habitats.

The formation and characteristics of loess sediments during the last glacial period in the Eonyang area, Ulsan-si, Korea (울산시 언양 지역 최종빙기 뢰스 형성과 퇴적물 특성)

  • YOON, Soon-Ock;PARK, Chung-Sun;HWANG, Sangill
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.4
    • /
    • pp.157-168
    • /
    • 2012
  • The Eonyang section is located at the confluent area of Samdong River to Taehwa River in Sinhwa-ri, Samnam-myeon, Ulju-gun, Ulsan-si, Korea. Physical analyses such as the OSL age dating, magnetic susceptibility and grain size analysis were performed. Coarse grains in the upper section were deposited by the aeolian processes from the local sources and the grains in the lower section by the fluvial processes. The Eonyang section shows the large differences such as the irregularity in the variations of magnetic susceptibility, large deviations in the Y values and very poor sorting values from the loess sediments in Bongdong, Geochang and Daecheon in Korea. These characteristics in the Eonyang section suggest the multi-source areas such as the Chinese Loess Plateau and nearby floodplain or the influences by the other processes. The loess sediments of Eonyang section were formed during the period from the late MIS 3 to MIS 2.