• 제목/요약/키워드: Lower Control Arm

검색결과 96건 처리시간 0.033초

주조/단조 기술을 이용한 알루미늄 Lower Control Arm 제조에 관한 연구 (A Study on the Manufacture of Lower Control Arm by Casting/Forging Process)

  • 유민수;권오혁;배원병
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.139-142
    • /
    • 2003
  • In this study, casting/forging process was used to produce an aluminum lower control arm for automobiles. Firstly, casting experiments were carried out to get an enhanced preform for forging the lower control arm. In the casting experiment, the effect of an additive, Sr, on the mechanical properties such as tensile strength and elongation and the microstructure of a cast preform were investigated. And a finite element analysis was peformed to determine an optimal configuration of the cast preform. Lastly, a forging experiment was carried out to make the final product of aluminum lower control arm by using the above cast preform. In the casting experiments, when 0.025% Sr was added into molten A356, the maximum values of tensile strength and elongation of the cast preform were obtained. In the forging experiment, It was confirmed that the optimal configuration of a cast preform predicted by FE analysis was very useful. The cast/forged product using designed preform was made without any defects.

  • PDF

다구찌 최적화 방법을 이용한 단판형 로어암 개발 (Development of One-Piece Lower Control Arm Based on Taguchi Optimization Method)

  • 오승택;이두환;한도석;장용민;김대용
    • 소성∙가공
    • /
    • 제17권8호
    • /
    • pp.613-618
    • /
    • 2008
  • As one way of cost innovation and weight saving of the automobile, the one-piece typed lower control arm was developed for the purpose of replacing the box typed lower control arm. In order to overcome less buckling strength of the one-piece typed lower control arm, the design parameters such as the high strength steel grade, the thickness and the shape of main panel were optimized based on Taguchi method.

내구성을 고려한 하부 컨트롤 암의 구조설계 (Structural Design of a Front Lower Control Arm Considering Durability)

  • 박한석;김종규;서선민;이권희;박영철
    • 한국기계가공학회지
    • /
    • 제8권4호
    • /
    • pp.69-75
    • /
    • 2009
  • Recently developed automotive components are getting lighter providing a higher fuel efficiency and performance. Following the current trend, this study proposes a structural optimization method for the lower control arm installed at the front side of a Vehicle. Lightweight design of lower control arm can be achieved through design and material technology. In this research, the shape of lower control arm was determined by applying the optimization technology and aluminum was selected as a steel-substitute material. Strength performance is the most important design requirement in the structural design of a control arm. This study considers the static strength in the optimization process. For the optimum design, the durability analysis is performed to predict its fatigue life. In this study, the kriging interpolation method is adopted to obtain the minimum weight satisfying the strength constraint. Optimum designs are obtained by the in-house program, EXCEL-Kriging. Also, based on the optimum model obtained for the static strength, the optimization of Index of Fatigue Durability is carried out to get th optimum fatigue performance.

  • PDF

자동차 로우어 암의 내구성 및 응력 해석 (Durability and Stress Analysis On Automotive Lower Arm)

  • 조재웅;한문식
    • 한국생산제조학회지
    • /
    • 제19권3호
    • /
    • pp.376-380
    • /
    • 2010
  • The capability of automotive suspension system depends on steering safety of knuckle and lower control arm. In this study, light weight is applied with lower arm by the material of aluminium alloy. Distributed stress, fatigue life and proper vibration are analyzed with multiple loads happened by automobile. The durability of lower arm can be verified by the result of structural analysis.

실험계획법을 적용한 Lower Control Arm의 피로수명 형상 최적설계 (Shape Optimization for Improving Fatigue Life of a Lower Control Arm Using the Experimental Design)

  • 김민수;이창욱;손성효;임홍재;허승진
    • 한국자동차공학회논문집
    • /
    • 제11권3호
    • /
    • pp.161-166
    • /
    • 2003
  • In order to improve the fatigue lift of a lower control arm in the vehicle suspension, a new shape optimization procedure is presented. In this approach, the shape control point concept is introduced to reduce the numbers of shape design variables. Also, the two-level orthogonal way is employed to evaluate the design sensitivity of fatigue life with respect to those shape design variables, because the analytical design sensitivity information is not directly supplied from the commercial CAE softwares. In this approach, only the six design variables are used to approximate the shape of lower control arm. Then, performed are only 10 fatigue life analyses including the baseline design, 8 DOE models and the final design. The final design, the best combination obtained from the sensitivity information, can maximize the fatigue lift nearly two times as that of the baseline design, while reducing the 12 percentage of weight than it.

변동하중을 받는 Lower Control Arm의 잔류응력 변화 (Residual Stress of the Lower Control Arm Subjected to Cyclic Loading)

  • 김기훈;강우종
    • 대한기계학회논문집A
    • /
    • 제30권5호
    • /
    • pp.602-608
    • /
    • 2006
  • Vehicle components such as lower control arm are usually affected by heat during the welding process. As a result, residual stress is generated, which has much effect on mechanical performances such as crashworthiness and durability. In this study, the residual stress in lower control arm has been measured by the x-ray diffraction method and been analyzed by finite element methods. Heat transfer during seam weld process has been calculated and used in calculating thermal deformation with temperature dependent material properties. High residual stress has been found at vertical wall both by measurement and simulation. The simulation also showed the residual stress re-distribution when the component is subjected to cyclic loading condition.

Explicit code를 이용한 Lower control arm의 스탬핑 해석 (Analysis of stamping for the Lower control arm using Explicit code)

  • 하원필;임세영
    • 한국자동차공학회논문집
    • /
    • 제2권4호
    • /
    • pp.50-58
    • /
    • 1994
  • To examine the residual stress field resulting from stamping process for the lower control arm of a car, the explicit finite element analysis is performed for the stamping process by way of the ABAQUS Explicit. The residual stress is obtained in terms of the Von Mises stress and other parameters such as equivalent plastic strain, the change of blank thickness, the final configuration of the blank and the spring back effect are also considered. Moreover, discussed is the convergence of the explicit FEM versus the punch sped and the element discretization

  • PDF

경량화에 대한 안전성을 고려한 로우컨트롤암의 다목적 최적설계 (Multi-objective Optimization of Lower Control Arm Considering the Stability for Weight Reduction)

  • 이동화;박영철;허선철
    • 한국자동차공학회논문집
    • /
    • 제11권4호
    • /
    • pp.94-101
    • /
    • 2003
  • Recently, miniaturization and weight reduction is getting more attention due to various benefits in automotive components design. It is a trend that the design of experiment(DOE) and statical design method are frequently used for optimization. In this research, the safety of lower control arm is evaluated according to its material change form S45C to A16061 for the reduction of arm's weight. The variance analysis on the basis of structure analysis and DOE is applied to the lower control m. We have proposed a statistical design model to evaluate the effect of structural modification by performing the practical multi-objective optimization considering mass, stress and deflection.

민감도 해석을 이용한 로우어 컨트롤 암의 구조 최적설계 (Structure Optimization for a Lower Control Arm Using Sensitivity Analysis)

  • 송병철;조영직;김주형;이권희;박영철
    • 한국기계가공학회지
    • /
    • 제7권1호
    • /
    • pp.17-21
    • /
    • 2008
  • Recently developed automotive components are of lightweight nature, providing automobiles with a high fuel efficiency and performance. In response to those trends of car developments, this study proposes a structural optimization method for the lower control ann. Lightweight design of lower control am can be achieved through two approaches: design and material technology. In this research, the former includes optimization technology, and the latter the technologies for selecting aluminum as a steel-substitute material. In this research, the design of experiments(DOE) built in ANSYS WORKBENCH are utilized to determine the optimum shape of a Lower Control Arm. And optimum design is compared first model and reduced design variable model that considered sensitivity using orthogonal array.

  • PDF

특성함수와 피로해석을 이용한 로워컨트롤암의 형상최적설계 (Shape Optimization of the Lower Control Arm using the Characteristic Function and the Fatigue Analysis)

  • 박영철;이동화
    • 한국자동차공학회논문집
    • /
    • 제13권1호
    • /
    • pp.119-125
    • /
    • 2005
  • The current automotive is seeking the improvement of performance, the prevention of environmental pollution and the saving of energy resources according to miniaturization and lightweight of the components. And the variance analysis on the basis of structure analysis and DOE is applied to the lower control am. We have proposed a statistical design model to evaluate the effect of structural modification by performing the practical multi-objective optimization considering weight, stress and fatigue lift. The lower control arm is performed the fatigue analysis using the load history of real road test. The design model is determined using the optimization of acquired load history with the fatigue characteristic. The characteristic function is made use of the optimization according to fatigue characteristics to consider constrained function in the optimization of DOE. The structure optimization of a lower control arm according to fatigue characteristics is performed. And the optimized design variable is D=47 m, T=36mm, W=12 mm. In the real engineering problem of considering many objective functions, the multi-objective optimization process using the mathematical programming and the characteristic function is derived an useful design solution.