• 제목/요약/키워드: Low-temperature phase transformation

검색결과 102건 처리시간 0.02초

저온 열처리에 의한 Y-TZP 분말의 등온 상전이 (The Isothermal Phase Transformation by Low Temperature Aging in Y-TZP Powders)

  • 이종국;김환
    • 한국세라믹학회지
    • /
    • 제27권8호
    • /
    • pp.971-978
    • /
    • 1990
  • The ifluence of transformability and stabilized effects in tetragonal phase on the isothermal phase transformation of Y-TZP at low temperature were investigated. The transformability of Y-TZP powders were gradually increased with calcination temeprature and reached maximum at critical temperature, but when the Y-TZP powders were calcined above critical temperature, transformability of Y-TZP were gradually decreased with increasing calcination temperature. It was concluded that maximum transformability was appeared because particle size effects decreased and constrain effects increased with calcined temperature. The isothermal phase transformation during aging at 25$0^{\circ}C$ only observed in Y-TZP stabilized by constrain effects and the amounts of transformation during aging at 25$0^{\circ}C$ only observed in Y-TZP stabilized by constrain effects and the amount of transformed monoclinic phase during aging decreased with increasing constrain effects. From these results, the mechanism of isothermal phase transformation and degradation behaviors at low temperature in Y-TZP was concluded that occurred by decreasing of constrain effects due to stress relaxation at grian boundary.

  • PDF

저온상변태법을 이용한 주석 및 산화주석 나노말의 제조 (Fabrication of Sn and SnO2 Nanopowders by Low-Temperature Phase Transformation Method)

  • 이근재;주연준;소용대;김남훈;이재성;좌용호
    • 한국분말재료학회지
    • /
    • 제13권1호
    • /
    • pp.46-51
    • /
    • 2006
  • Through the volume change of Sn in a low-temperature phase transformation, the Sn nanopowder with high, purity, was fabricated by an economic and eco-friendly process. The fine cracks were spontaneously generated. in, Sn ingot, which was reduced to powders in the repetition of phase transformation. The Sn nanopowder with 50 run in size was obtained by the 24th repetitions of phase transformation by low-temperature and ultrasonic treatments. Also, the $SnO_2$ powder was fabricated by the oxidation of the produced Sn powder to the ingot and milled by the ultrasonic milling method. The $SnO_2$ nanopowder of 20 nm in size was fabricated after the milling for 180 h.

$\beta$형 Dicalcium Silicate 광물의 상 안정성 및 미세구조변화 (Microstructure and Phase Stability of $\beta$-Dicalcium Silicate)

  • 박춘근
    • 한국세라믹학회지
    • /
    • 제34권9호
    • /
    • pp.957-962
    • /
    • 1997
  • Dicalcium silicate has many polymorphs according to temperature. $\beta$-dicalcium silicate which exists in cement is stabilized by minor components drived from raw materials regardless of temperature, such as high temperature and room temperature. K2O, SO3 and B2O3 are effective stabilizers for $\beta$-dicalcium silicate at room temperature. B2O3 was the most effective stabilizer. Transformation from $\beta$ to ${\gamma}$ phase causes dicalcium silicate to change volume, resulting in dusting phenomenon. When B2O3 was used the phase transformation is the least than any other stabilizers. In addition, the starting temperature of quenching influences phases transformation : low temperature of quenching presented much phase transformation and decreased size of parameter of $\beta$-dicalcium silicate.

  • PDF

저온 열처리에 의한 Y-TZP 미세조직의 변화 (The Change of Microstructures by Low Temperature Aging in Y-TZP)

  • 이종국;김환
    • 한국세라믹학회지
    • /
    • 제27권6호
    • /
    • pp.735-740
    • /
    • 1990
  • The phase transformation of Y-TZP by low temperature aging treatments and its related behaviors of crack formation were investigated. The kinetics of phase transformation was greatly dependent on the amounts of Y2O3, grian size and microstructures of sintered body. The phase transformation happened to start at specimen surface and near the pore in the first place, where the change of strain energy during the phase transformation was small and the water vapor that accelerated phase transformation easily diffused.

  • PDF

재결정제어압연용 저탄소강의 연속냉각 상변태거동에 미치는 Nb 첨가효과 (Effect of Nb Addition on Phase Transformation Behavior during Continuous Cooling in Low Carbon Steels for Recrystallization Control Rolling)

  • 이상우;주웅용
    • 열처리공학회지
    • /
    • 제13권5호
    • /
    • pp.346-354
    • /
    • 2000
  • Effect of Nb addition on the phase transformation behavior was studied through continuous cooling transformation tests after reheating(reheating CCT) and deforming(deforming CCT) the 0.07%C-1.3%Mn-0.015%Ti-(0~0.08)% Nb steels. Transformation temperatures for deforming CCT were lower than those for reheating CCT, and the critical cooling rate for bainite transformation during deforming CCT was lower than that during reheating CCT. These enhanced hardenability for deforming CCT was considered to come from the sufficient solid solution of Nb in austenite during high temperature reheating before deformation. With Nb addition, the phase transformation temperature decreased, the bainite formation was enhanced, and the hardness of steel increased. Furthermore, these phenomena were more remarkable for deforming CCT than for reheating CCT. From the results, Nb-Ti bearing low carbon steel was considered to be a very favorable alloy system with good strength/toughness balance by recrystallization control rolling process.

  • PDF

The effect of low temperature aging on the mechanical property & phase stability of Y-TZP ceramics

  • Kim, Hyung-Tae;Han, Jung-Suk;Yang, Jae-Ho;Lee, Jai-Bong;Kim, Sung-Hun
    • The Journal of Advanced Prosthodontics
    • /
    • 제1권3호
    • /
    • pp.113-117
    • /
    • 2009
  • STATEMENT OF PROBLEM. Recently Yttrium-stabilized tetragonal zirconia polycrystal (Y-TZP) has been introduced due to superior flexural strength and fracture toughness compared to other dental ceramic systems. Although zirconia has outstanding mechanical properties, the phenomenon of decrease in the life-time of zirconia resulted from degradation in flexural strength after low temperature aging has been reported. PURPOSE. The objective of this study was to investigate degradation of flexural strength of Y-TZP ceramics after various low temperature aging treatments and to evaluate the phase stability and micro-structural change after aging by using X-ray diffraction analysis and a scanning electron microscope (SEM). MATERIAL AND METHODS. Y-TZP blocks of Vita In-Ceram YZ (Vita Zahnfabrik, Bad $S\ddot{a}ckingen$, Germany) were prepared in 40 mm (length) $\times$ 4 mm (width) $\times$ 3 mm (height) samples. Specimens were artificially aged in distilled water by heat-treatment at a temperature of 75, 100, 125, 150, 175, 200, and $225^{\circ}C$ for 10 hours, in order to induce the phase transformation at the surface. To measure the mechanical property, the specimens were subjected to a four-point bending test using a universal testing machine (Instron model 3365; Instron, Canton, Mass, USA). In addition, X-ray diffraction analysis (DMAX 2500; Rigaku, Tokyo, Japan) and SEM (Hitachi s4700; Jeol Ltd, Tokyo, Japan) were performed to estimate the phase transformation. The statistical analysis was done using SAS 9.1.3 (SAS institute, USA). The flexural strength data of the experimental groups were analyzed by one-way analysis of variance and to detect statistically significant differences ($\alpha$= .05). RESULTS. The mean flexural strength of sintered Vita In-Ceram YZ without autoclaving was 798 MPa. When applied aging temperature at below $125^{\circ}C$ for 10 hours, the flexural strength of Vita In-Ceram YZ increased up to 1,161 MPa. However, at above $150^{\circ}C$, the flexural strength started to decrease. Although low temperature aging caused the tetragonal-to-monoclinic phase transformation related to temperature, the minimum flexural strength was above 700 MPa. CONCLUSION. The monoclinic phase started to appear after aging treatment above $100^{\circ}C$. With the higher aging temperature, the fraction of monoclinic phase increased. The ratio of monoclinic/tetragonal + monoclinic phase reached a plateau value, circa 75% above $175^{\circ}C$. The point of monoclinic concentration at which the flexural strength begins to decrease was between 12% and 54%.

TTT/CCT 데이터를 이용한 저합금강의 죠미니 경화능 곡선 계산 (Calculation of Jominy Hardenability Curve of Low Alloy Steels from TTT/CCT data)

  • 정민수;손윤호
    • 열처리공학회지
    • /
    • 제32권1호
    • /
    • pp.17-28
    • /
    • 2019
  • Jominy hardenability curves of low alloy steel containing less than 5 wt.% of alloying elements in total were calculated by applying Scheil's rule of additivity to pre-calculated isothermal transformation curve. Isothermal transformation curve for each phase in steel was approximated as a simple mathematical equation by using Kirkaldy's approach and all coefficients in the equation were estimated from experimental temperature-time-transformation (TTT) and/or continuous cooling transformation (CCT) data in the literature. Then jominy test with simple boundary conditions was performed in computer by applying the finite difference scheme. The resultant cooling curves at each location along a longitudinal direction of Jominy bar were applied to calculate phase fractions as well as mechanical properties such as micro Vickers hardness. The simulated results were compared with experimental CCT data and Jominy curves in the literature.

오스테나이트 스테인리스강의 극저온 특성 (An Extremely Low Temperature Properties of Austenite Stainless Steels)

  • 정찬회;김순국;이준희;정세진;김익수
    • 한국재료학회지
    • /
    • 제17권1호
    • /
    • pp.37-42
    • /
    • 2007
  • The effects of immersion time in the liquid nitrogen and deformation-induced martensitic transformation on the behavior of austenite stainless steels used for the hydrogen storage tank of auto-mobile at cryogenic temperature were investigated. With increasing of immersion time in the liquid nitrogen, the tensile strength of all austenite stainless steels at cryogenic temperature was increased because the martensite transformation of unstable austenite. The restraint of crack generation ana transmission also increased the tensile strength by the active ${\alpha}'$ transformation. The elongation decreasing of 321 steel is not the mechanical deformation of austenite phase but the stress induced martensite phase during the tensile test.

Phase Transformation Behavior of Bi2O3-ZnO-Nb2O5 Ceramics sintered at low Temperature

  • Shiao, Fu-Thang;Ke, Han-Chou;Lee, Ying-Chieh
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1232-1233
    • /
    • 2006
  • To co-fire with commercial LTCC (Low Temperature Co-fired Ceramic) materials at $850^{\circ}C{\sim}880^{\circ}C$, different contents of $B_2O_3$ were added to the $Bi_2O_3-ZnO-Nb_2O_5$ (BZN) ceramics. According to the test results, the cubic phase of BZN was transformed into orthorhombic in all the test materials. $BiNbO_4$ phase was formed in test materials with $2{\sim}5wt%$ of $B_2O_3$ addition. The phase transformation of cubic BZN was controlled during the synthesis process with excess ZnO content. The Cubic and orthorhombic phases of BZN could coexist and be sintered densely at $850^{\circ}C/2hr$.

  • PDF

Effect of Phase Stability on the Microstructure Development of α-SiAlON Ceramics

  • Kim, Joosun;Lee, Hae-Weon;Chen, I-Wei
    • 한국분말재료학회지
    • /
    • 제10권2호
    • /
    • pp.118-122
    • /
    • 2003
  • Alpha-SiAlON ceramics having various compositions and modifying cations were investigated with respect to their phase stability, transformation kinetics. and resulting microstructures. Each composition was heat treated at 150$0^{\circ}C$ for 1h and measured the $\alpha$-SiAlON transformation. The phase-boundary composition in the single-phase $\alpha$-SiAlON region showed sluggish transformation from $\alpha$-$Si_3N_4$ to $\alpha$-SiAlON compared to the phase-center composition in the diagram. Using the different rare earth modifying cations, dependence of transformation kinetics on the phase stability in a fixed composition was also explained. By changing size of the stable u-phase region with exchanging cations, systematic change in transformation was observed. Transformation rate of $\alpha$-SiAlON at low temperature has an important role on controlling the final microstructure. Less transformation gives more chances to develop elongated grain in the microstructure.