• Title/Summary/Keyword: Low-temperature co-fired coating

Search Result 3, Processing Time 0.018 seconds

Performance Evaluation of Plate Heat Exchanger Applied Low Temperature Cofired Coating (저온소성 코팅을 적용한 판형 열교환기의 성능평가)

  • Lee, Won-Ju;Shin, Woo-Jung;Lee, Dong-kyu;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.4
    • /
    • pp.407-414
    • /
    • 2017
  • In this study, a performance evaluation was conducted using a SUS 304 plate applied to low-temperature co-fired coating as a replacement for titanium plates. As a result of computational fluid dynamic analysis, the SUS 304 plate, applied to low-temperature co-fired coating, showed better heat transfer performance than a titanium plate, for 100 micron thickness coating. The result of the experiments using an actual heat exchanger revealed that a coated SUS 304 plate showed better heat transfer performance than a titanium plate. Furthermore, as the degree of corrosion and scale formation of the plate was confirmed through an overhaul inspection, the corrosion resistance of a coated SUS 304 plate was found to be almost the same as that of a titanium plate, and the inhibition effect of scale formation by sea water was better with a coated SUS 304 plate.

A Study on the Optimum Design for LTCC Micro-Reformer: (Performance Evaluation of Various Flow Channel Structures ('LTCC를 소재로 하는 마이크로 리포머의 최적 설계에 관한 연구: (다양한 채널구조에 따른 성능변화 고찰)')

  • Chung Chan-Hwa;Oh Jeong-Hoon
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.551-552
    • /
    • 2006
  • The miniature fuel cells have emerged as a promising power source for applications such as cellular phones, small digital devices, and autonomous sensors to embedded monitors or to micro-electro mechanical system (MEMS) devices. Several chemicals run candidate at a fuel in those systems, such as hydrogen. methanol, ethanol, acetic acid, and di-methyl ether (DME). Among them, hydrogen shows most efficient fuel performance. However, there are some difficulties in practical application for portable power sources. Therefore, more recently, there have been many efforts for development of micro-reformer to operate highly efficient micro fuel cells with liquid fuels such as methanol, ethanol, and DME In our experiments, we have integrated a micro-fuel processor system using low temperature co-fired ceramics (LTCC) materials. Our integrated micro-fuel processor system is containing embedded heaters, cavities, and 3D structures of micro- channels within LTCC layers for embedding catalysts (cf. Figs. 1 and 2). In the micro-channels of LTCC, we have loaded $CuO/ZnO/Al_2O_3$ catalysts using several different coating methods such as powder packing or spraying, dipping, and washing of catalyst slurry.

  • PDF

Fabrication and Characteristics of Anode-supported Tubular Solid Oxide Fuel Cell (연료극 지지체식 원통형 고체산화물 연료전지의 제조 및 특성)

  • Song, Keun-Sik;Song, Rak-Hyun;Ihm, Young-Eon
    • Korean Journal of Materials Research
    • /
    • v.12 no.9
    • /
    • pp.691-695
    • /
    • 2002
  • A low temperature anode-supported tubular solid oxide fuel cell was developed. The anode-supported tube was fabricated using extrusion process. Then the electrolyte layer and the cathode layer were coated onto the anode tube by slurry dipping process, subsequently. The anode tube and electrolyte were co-fired at $140^{\circ}C$, and the cathode was sintered at $1200^{\circ}C$. The thickness and gas permeability of the electrolyte depended on the number of coating and the slurry concentration. Anode-supported tube was satisfied with SOFC requirements, related to electrical conductivity, pore structure, and gas diffusion limitations. At operating temperature of $800^{\circ}C$, open circuit voltage of the cell with gastight and dense electrolyte layer was 1.1 V and the cell showed a good performance of 450 mW/$\textrm{cm}^2$.