• Title/Summary/Keyword: Low-resolution image

Search Result 862, Processing Time 0.029 seconds

Prediction by Edge Detection Technique for Lossless Multi-resolution Image Compression (경계선 정보를 이용한 다중 해상도 무손질 영상 압축을 위한 예측기법)

  • Kim, Tae-Hwa;Lee, Yun-Jin;Wei, Young-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.3
    • /
    • pp.170-176
    • /
    • 2010
  • Prediction is an important step in high-performance lossless data compression. In this paper, we propose a novel lossless image coding algorithm to increase prediction accuracy which can display low-resolution images quickly with a multi-resolution image technique. At each resolution, we use pixels of the previous resolution image to estimate current pixel values. For each pixel, we determine its estimated value by considering horizontal, vertical, diagonal edge information and average, weighted-average information obtained from its neighborhood pixels. In the experiment, we show that our method obtains better prediction than JPEG-LS or HINT.

Feature Generation Method for Low-Resolution Face Recognition (저해상도 얼굴 영상의 인식을 위한 특징 생성 방법)

  • Choi, Sang-Il
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.9
    • /
    • pp.1039-1046
    • /
    • 2015
  • We propose a feature generation method for low-resolution face recognition. For this, we first generate new features from the input features (pixels) of a low-resolution face image by adding the higher-order terms. Then, we evaluate the separability of both of the original input features and new features by computing the discriminant distance of each feature. Finally, new data sample used for recognition consists of the features with high separability. The experimental results for the FERET, CMU-PIE and Yale B databases show that the proposed method gives good recognition performance for low-resolution face images compared with other method.

Super Resolution by Learning Sparse-Neighbor Image Representation (Sparse-Neighbor 영상 표현 학습에 의한 초해상도)

  • Eum, Kyoung-Bae;Choi, Young-Hee;Lee, Jong-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.12
    • /
    • pp.2946-2952
    • /
    • 2014
  • Among the Example based Super Resolution(SR) techniques, Neighbor embedding(NE) has been inspired by manifold learning method, particularly locally linear embedding. However, the poor generalization of NE decreases the performance of such algorithm. The sizes of local training sets are always too small to improve the performance of NE. We propose the Learning Sparse-Neighbor Image Representation baesd on SVR having an excellent generalization ability to solve this problem. Given a low resolution image, we first use bicubic interpolation to synthesize its high resolution version. We extract the patches from this synthesized image and determine whether each patch corresponds to regions with high or low spatial frequencies. After the weight of each patch is obtained by our method, we used to learn separate SVR models. Finally, we update the pixel values using the previously learned SVRs. Through experimental results, we quantitatively and qualitatively confirm the improved results of the proposed algorithm when comparing with conventional interpolation methods and NE.

Single Image Super-resolution using Recursive Residual Architecture Via Dense Skip Connections (고밀도 스킵 연결을 통한 재귀 잔차 구조를 이용한 단일 이미지 초해상도 기법)

  • Chen, Jian;Jeong, Jechang
    • Journal of Broadcast Engineering
    • /
    • v.24 no.4
    • /
    • pp.633-642
    • /
    • 2019
  • Recently, the convolution neural network (CNN) model at a single image super-resolution (SISR) have been very successful. The residual learning method can improve training stability and network performance in CNN. In this paper, we propose a SISR using recursive residual network architecture by introducing dense skip connections for learning nonlinear mapping from low-resolution input image to high-resolution target image. The proposed SISR method adopts a method of the recursive residual learning to mitigate the difficulty of the deep network training and remove unnecessary modules for easier to optimize in CNN layers because of the concise and compact recursive network via dense skip connection method. The proposed method not only alleviates the vanishing-gradient problem of a very deep network, but also get the outstanding performance with low complexity of neural network, which allows the neural network to perform training, thereby exhibiting improved performance of SISR method.

Patch Information based Linear Interpolation for Generating Super-Resolution Images in a Single Image (단일이미지에서의 초해상도 영상 생성을 위한 패치 정보 기반의 선형 보간 연구)

  • Han, Hyun-Ho;Lee, Jong-Yong;Jung, Kye-Dong;Lee, Sang-Hun
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.6
    • /
    • pp.45-52
    • /
    • 2018
  • In this paper, we propose a linear interpolation method based on patch information generated from a low - resolution image for generating a super resolution image in a single image. Using the regression model of the global space, which is a conventional super resolution generation method, results in poor quality in general because of lack of information to be referred to a specific region. In order to compensate for these results, we propose a method to extract meaningful information by dividing the region into patches in the process of super resolution image generation, analyze the constituents of the image matrix region extended for super resolution image generation, We propose a method of linear interpolation based on optimal patch information that is searched by correlating patch information based on the information gathered before the interpolation process. For the experiment, the original image was compared with the reconstructed image with PSNR and SSIM.

2-D OCT image implementation using low coherence SLD (Low coherence 특성의 SLD를 이용한 2차원 OCT 영상 구현)

  • 정태호;박양하;오상기;김용평
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.290-291
    • /
    • 2003
  • Optical Coherence Tomography is a new medical dianostic imaging technology which can perform micron resolution cross-sectional or tomograpic imaging in biological tissue. In this paper, we analyze OCT system. And we have 2-dimensional OCT image implementation using low coherence SLD.

  • PDF

Example-based Super Resolution Text Image Reconstruction Using Image Observation Model (영상 관찰 모델을 이용한 예제기반 초해상도 텍스트 영상 복원)

  • Park, Gyu-Ro;Kim, In-Jung
    • The KIPS Transactions:PartB
    • /
    • v.17B no.4
    • /
    • pp.295-302
    • /
    • 2010
  • Example-based super resolution(EBSR) is a method to reconstruct high-resolution images by learning patch-wise correspondence between high-resolution and low-resolution images. It can reconstruct a high-resolution from just a single low-resolution image. However, when it is applied to a text image whose font type and size are different from those of training images, it often produces lots of noise. The primary reason is that, in the patch matching step of the reconstruction process, input patches can be inappropriately matched to the high-resolution patches in the patch dictionary. In this paper, we propose a new patch matching method to overcome this problem. Using an image observation model, it preserves the correlation between the input and the output images. Therefore, it effectively suppresses spurious noise caused by inappropriately matched patches. This does not only improve the quality of the output image but also allows the system to use a huge dictionary containing a variety of font types and sizes, which significantly improves the adaptability to variation in font type and size. In experiments, the proposed method outperformed conventional methods in reconstruction of multi-font and multi-size images. Moreover, it improved recognition performance from 88.58% to 93.54%, which confirms the practical effect of the proposed method on recognition performance.

Multi-resolution Lossless Image Compression for Progressive Transmission and Multiple Decoding Using an Enhanced Edge Adaptive Hierarchical Interpolation

  • Biadgie, Yenewondim;Kim, Min-sung;Sohn, Kyung-Ah
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.6017-6037
    • /
    • 2017
  • In a multi-resolution image encoding system, the image is encoded into a single file as a layer of bit streams, and then it is transmitted layer by layer progressively to reduce the transmission time across a low bandwidth connection. This encoding scheme is also suitable for multiple decoders, each with different capabilities ranging from a handheld device to a PC. In our previous work, we proposed an edge adaptive hierarchical interpolation algorithm for multi-resolution image coding system. In this paper, we enhanced its compression efficiency by adding three major components. First, its prediction accuracy is improved using context adaptive error modeling as a feedback. Second, the conditional probability of prediction errors is sharpened by removing the sign redundancy among local prediction errors by applying sign flipping. Third, the conditional probability is sharpened further by reducing the number of distinct error symbols using error remapping function. Experimental results on benchmark data sets reveal that the enhanced algorithm achieves a better compression bit rate than our previous algorithm and other algorithms. It is shown that compression bit rate is much better for images that are rich in directional edges and textures. The enhanced algorithm also shows better rate-distortion performance and visual quality at the intermediate stages of progressive image transmission.

Study of Efficient Network Structure for Real-time Image Super-Resolution (실시간 영상 초해상도 복원을 위한 효율적인 신경망 구조 연구)

  • Jeong, Woojin;Han, Bok Gyu;Lee, Dong Seok;Choi, Byung In;Moon, Young Shik
    • Journal of Internet Computing and Services
    • /
    • v.19 no.4
    • /
    • pp.45-52
    • /
    • 2018
  • A single-image super-resolution is a process of restoring a high-resolution image from a low-resolution image. Recently, the super-resolution using the deep neural network has shown good results. In this paper, we propose a neural network structure that improves speed and performance over conventional neural network based super-resolution methods. To do this, we analyze the conventional neural network based super-resolution methods and propose solutions. The proposed method reduce the 5 stages of the conventional method to 3 stages. Then we have studied the optimal width and depth by experimenting on the width and depth of the network. Experimental results have shown that the proposed method improves the disadvantages of the conventional methods. The proposed neural network structure showed superior performance and speed than the conventional method.

Resolution improvement of a CMOS vision chip for edge detection by separating photo-sensing and edge detection circuits (수광 회로와 윤곽 검출 회로의 분리를 통한 윤곽 검출용 시각칩의 해상도 향상)

  • Kong, Jae-Sung;Suh, Sung-Ho;Kim, Sang-Heon;Shin, Jang-Kyoo;Lee, Min-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.112-119
    • /
    • 2006
  • Resolution of an image sensor is very significant parameter to improve. It is hard to improve the resolution of the CMOS vision chip for edge detection based on a biological retina using a resistive network because the vision chip contains additional circuits such as a resistive network and some processing circuits comparing with general image sensors such as CMOS image sensor (CIS). In this paper, we proved the problem of low resolution by separating photo-sensing and signal processing circuits. This type of vision chips occurs a problem of low operation speed because the signal processing circuits should be commonly used in a row of the photo-sensors. The low speed problem of operation was proved by using a reset decoder. A vision chip for edge detection with $128{\times}128$ pixel array has been designed and fabricated by using $0.35{\mu}m$ 2-poly 4-metal CMOS technology. The fabricated chip was integrated with optical lens as a camera system and investigated with real image. By using this chip, we could achieved sufficient edge images for real application.