• 제목/요약/키워드: Low-resolution Face Recognition

검색결과 27건 처리시간 0.042초

A Novel Algorithm for Face Recognition From Very Low Resolution Images

  • Senthilsingh, C.;Manikandan, M.
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권2호
    • /
    • pp.659-669
    • /
    • 2015
  • Face Recognition assumes much significance in the context of security based application. Normally, high resolution images offer more details about the image and recognizing a face from a reasonably high resolution image would be easier when compared to recognizing images from very low resolution images. This paper addresses the problem of recognizing faces from a very low resolution image whose size is as low as $8{\times}8$. With the use of CCTV(Closed Circuit Television) and with other surveillance camera-based application for security purposes, the need to overcome the shortcomings with very low resolution images has been on the rise. The present day face recognition algorithms could not provide adequate performance when employed to recognize images from VLR images. Existing methods use super-resolution (SR) methods and Relation Based Super Resolution methods to construct from very low resolution images. This paper uses a learning based super resolution method to extract and construct images from very low resolution images. Experimental results show that the proposed SR algorithm based on relationship learning outperforms the existing algorithms in public face databases.

초고해상도 기반 비대면 저해상도 영상의 얼굴 인식 시스템 (Untact Face Recognition System Based on Super-resolution in Low-Resolution Images)

  • 배현빈;권오설
    • 한국멀티미디어학회논문지
    • /
    • 제23권3호
    • /
    • pp.412-420
    • /
    • 2020
  • This paper proposes a performance-improving face recognition system based on a super resolution method for low-resolution images. The conventional face recognition algorithm has a rapidly decreased accuracy rate due to small image resolution by a distance. To solve the previously mentioned problem, this paper generates a super resolution images based o deep learning method. The proposed method improved feature information from low-resolution images using a super resolution method and also applied face recognition using a feature extraction and an classifier. In experiments, the proposed method improves the face recognition rate when compared to conventional methods.

저해상도 영상 얼굴인식을 위한 전처리 방법 (Preprocessing Methods for Low-Resolution Face Image Recognition)

  • 이필규;김태윤;이다솔;김성재
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2017년도 추계학술발표대회
    • /
    • pp.781-784
    • /
    • 2017
  • 얼굴인식 시스템은 비접촉데이터 채집의 특성과 함께, 그 정확도가 점차 향상되고 있다. 공공 감시카메라와 같이 사진을 멀리서 찍는 상황에서는 저해상도의 얼굴 이미지로 인해 얼굴인식 시스템을 효과적으로 사용할 수 없는 경우가 있다. 이론적으로는 저해상도영상을 Super Resolution (SR) 방법으로 고해상도 영상으로 바꾸어 얼굴인식에 사용할 수 있지만, 기존의 SR 방법들은 얼굴 인식에 만족할만한 결과를 내지 못할 수 있다. 이 논문은 극 저해상도 (very low resolution) 얼굴인식 문제를 살펴보고 편미분방정식 기반 SR 방법을 제안하고, CNN 기반 얼굴인식 시스템에 응용한다.

저해상도 얼굴 영상의 인식을 위한 특징 생성 방법 (Feature Generation Method for Low-Resolution Face Recognition)

  • 최상일
    • 한국멀티미디어학회논문지
    • /
    • 제18권9호
    • /
    • pp.1039-1046
    • /
    • 2015
  • We propose a feature generation method for low-resolution face recognition. For this, we first generate new features from the input features (pixels) of a low-resolution face image by adding the higher-order terms. Then, we evaluate the separability of both of the original input features and new features by computing the discriminant distance of each feature. Finally, new data sample used for recognition consists of the features with high separability. The experimental results for the FERET, CMU-PIE and Yale B databases show that the proposed method gives good recognition performance for low-resolution face images compared with other method.

보안시스템을 위한 실시간 저해상도 얼굴 인식 알고리즘 (Real-time Low-Resolution Face Recognition Algorithm for Surveillance Systems)

  • 권오설
    • 방송공학회논문지
    • /
    • 제25권1호
    • /
    • pp.105-108
    • /
    • 2020
  • 본 논문은 초고해상도 기법을 이용한 실시간 저해상도 얼굴 인식 시스템을 제안한다. 기존의 비대면 얼굴인식은 거리에 따라 해상도가 저하되면서 얼굴인식의 성능이 저하되는 한계가 있다. 이러한 문제를 해결하기 위해서 초고해상도 기법에 대한 연구도 진행되었으나 비대면 얼굴인식 전 과정에 대한 통합적인 설계에 관한 연구는 미흡하다. 제안한 비대면 얼굴인식은 저해상도 영상으로 키프레임 검출, 얼굴검출, 초고해상도 기법, 특징추출 및 얼굴인식 결과까지 약 2초 이내에 수행함으로써 먼 거리에서도 비대면 얼굴인식의 성능을 향상하였다. 다양한 형태의 영상에 대한 실험을 통해 제안한 방법은 기존 방법에 비해 실시간 및 성능측면에서 저해상도 얼굴 인식이 우수함을 확인하였다.

Low Resolution Rate Face Recognition Based on Multi-scale CNN

  • Wang, Ji-Yuan;Lee, Eung-Joo
    • 한국멀티미디어학회논문지
    • /
    • 제21권12호
    • /
    • pp.1467-1472
    • /
    • 2018
  • For the problem that the face image of surveillance video cannot be accurately identified due to the low resolution, this paper proposes a low resolution face recognition solution based on convolutional neural network model. Convolutional Neural Networks (CNN) model for multi-scale input The CNN model for multi-scale input is an improvement over the existing "two-step method" in which low-resolution images are up-sampled using a simple bi-cubic interpolation method. Then, the up sampled image and the high-resolution image are mixed as a model training sample. The CNN model learns the common feature space of the high- and low-resolution images, and then measures the feature similarity through the cosine distance. Finally, the recognition result is given. The experiments on the CMU PIE and Extended Yale B datasets show that the accuracy of the model is better than other comparison methods. Compared with the CMDA_BGE algorithm with the highest recognition rate, the accuracy rate is 2.5%~9.9%.

희소표현법과 딥러닝을 이용한 초고해상도 기반의 얼굴 인식 (Face recognition Based on Super-resolution Method Using Sparse Representation and Deep Learning)

  • 권오설
    • 한국멀티미디어학회논문지
    • /
    • 제21권2호
    • /
    • pp.173-180
    • /
    • 2018
  • This paper proposes a method to improve the performance of face recognition via super-resolution method using sparse representation and deep learning from low-resolution facial images. Recently, there have been many researches on ultra-high-resolution images using deep learning techniques, but studies are still under way in real-time face recognition. In this paper, we combine the sparse representation and deep learning to generate super-resolution images to improve the performance of face recognition. We have also improved the processing speed by designing in parallel structure when applying sparse representation. Finally, experimental results show that the proposed method is superior to conventional methods on various images.

포톤 카운팅 선형판별법을 이용한 저해상도 얼굴 영상 인식 (Low Resolution Face Recognition with Photon-counting Linear Discriminant Analysis)

  • 염석원
    • 대한전자공학회논문지SP
    • /
    • 제45권6호
    • /
    • pp.64-69
    • /
    • 2008
  • 얼굴영상의 인식 기술은 보안과 감시를 비롯하여 머신 인터페이스와 콘텐츠 검색 등에서 활용이 광범위 하다. 그러나 주로 고해상도 영상이 연구의 대상이었고 원거리에서 획득된 저해상도 표적에 대하여 상대적으로 드물게 연구가 이루어졌다. 본 논문에서는 포톤 카운팅(Photon-counting) 선형판별법을 이용하여 저해상도 환경에서 얼굴영상의 인식을 수행한다. 포톤 카운팅 선형판별법은 Fisher 선형 판별법에서 발생하는 특이행렬 문제없이 Fisher의 최적화 기준을 실현한다. 즉, 차원의 축소나 특징 추출 과정 없이 고차원 공간에서 최적화된 투영을 위한 선형판별함수를 구성하고 이를 이용하여 판정하므로 저해상도 환경을 비롯한 얼굴영상의 왜곡의 극복에 효과적이다. 실험 결과는 제안한 방법이 주성분 분석을 활용하는 Eigen face 또는 주성분 분석과 Fisher 선형판별법이 결합된 Fisher face보다 우수하다는 것을 보여준다.

Boosting the Face Recognition Performance of Ensemble Based LDA for Pose, Non-uniform Illuminations, and Low-Resolution Images

  • Haq, Mahmood Ul;Shahzad, Aamir;Mahmood, Zahid;Shah, Ayaz Ali;Muhammad, Nazeer;Akram, Tallha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권6호
    • /
    • pp.3144-3164
    • /
    • 2019
  • Face recognition systems have several potential applications, such as security and biometric access control. Ongoing research is focused to develop a robust face recognition algorithm that can mimic the human vision system. Face pose, non-uniform illuminations, and low-resolution are main factors that influence the performance of face recognition algorithms. This paper proposes a novel method to handle the aforementioned aspects. Proposed face recognition algorithm initially uses 68 points to locate a face in the input image and later partially uses the PCA to extract mean image. Meanwhile, the AdaBoost and the LDA are used to extract face features. In final stage, classic nearest centre classifier is used for face classification. Proposed method outperforms recent state-of-the-art face recognition algorithms by producing high recognition rate and yields much lower error rate for a very challenging situation, such as when only frontal ($0^{\circ}$) face sample is available in gallery and seven poses ($0^{\circ}$, ${\pm}30^{\circ}$, ${\pm}35^{\circ}$, and ${\pm}45^{\circ}$) as a probe on the LFW and the CMU Multi-PIE databases.

저해상도 얼굴 영상의 해상도 개선을 위한 영역 기반 복원 방법 (Region-Based Reconstruction Method for Resolution Enhancement of Low-Resolution Facial Image)

  • 박정선
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권5호
    • /
    • pp.476-486
    • /
    • 2007
  • 본 논문에서는 영역 기반 복원 방법을 통하여 한 장의 저해상도 얼굴 영상으로부터 고해상도 얼굴 영상을 복원하는 방법을 제안한다. 제안된 방법은 예제 기반 복원과 얼굴 영상을 형태 정보와 질감 정보로 나누어 표현하는 변형 가능 얼굴 모형에 기반한다. 먼저, 예제 기반 복원 방법의 성능을 개선하기 위하여, 전역 복원 결과와 국부적 복원 결과를 결합하는 영역 기반 복원 방법을 제안한다. 또한, 변형 가능 얼굴 모형의 장점을 해상도 복원에 적용하기 위하여, 확장된 변형 가능 얼굴 모형을 정의한다. 제안된 모형에서 얼굴 영상은 저해상도 얼굴 영상, 보간법을 통해 개선한 고해상도 얼굴 영상, 그리고 원래의 고해상도 얼굴 영상의 쌍으로 구성되며, 이는 다시 확장된 형태 정보와 확장된 질감 정보로 나뉜다. 다양한 실험을 통하여, 제안된 방법이 저해상도 얼굴 영상으로부터 고해상도 얼굴 영상을 효과적으로 복원함을 입증하였으며, 이 방법을 사용하여 원거리 감시 시스템에서 획득된 저해상도 얼굴 영상을 고해상도 얼굴 영상으로 합성함으로써, 얼굴 인식 시스템의 성능을 높일 수 있는 가능성을 확인하였다.