• 제목/요약/키워드: Low-profile design

검색결과 234건 처리시간 0.03초

박형 자기소자를 이용한 공진형 직류/직류 컨버터의 설계${\cdot}$제작 및 평가 (Design, Implementation and Evaluation of Resonant DC/DC Converter Using Low-Profile Magnetic Device)

  • 고지명;최병조;차헌녕
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2004년도 전력전자학술대회 논문집(1)
    • /
    • pp.350-354
    • /
    • 2004
  • This paper presents theoretical and practical details about the design, implementation, and performance of a series resonant do-to-dc converter using planar magnetics. Result of sinusoidal analysis are used to predict the voltage gain and conversion efficiency. The performance of a prototype converter is presented including the efficiency measurement and theoretical loss breakdown.

  • PDF

온라인 학습에서 의과대학생의 동기조절 프로파일 유형에 따른 인지학습과 학습몰입 간 관계 분석 (Latent Profile Analysis of Medical Students' Use of Motivational Regulation Strategies for Online Learning)

  • 윤헌철;김선;정은경
    • 의학교육논단
    • /
    • 제23권2호
    • /
    • pp.118-127
    • /
    • 2021
  • Due to the coronavirus disease 2019 pandemic, the new norm of online learning has been recognized as core to medical institutions for academic continuity, and students are expected to be motivated and engaged in learning while maintaining distance from other peers and educators. To facilitate students' and educators' newly defined roles in online medical education settings, it is crucial to understand how students are actively motivated and engaged in learning. Hence, this study explored medical students' motivational regulation profiles and examined the effects of motivational regulation strategies (MRS) on cognitive learning and learning engagement for online learning. Data were collected after the end of the first semester in 2020 from a sample of 334 medical students enrolled at a public university school of medicine. Latent profile analysis indicated three subgroups with different motivational regulation profiles: the low-profile, medium-profile, and high-profile groups. Regarding different MRS patterns in the high-profile group, mastery self-talk, performance approach self-talk, and the self-consequating strategy appeared to be most applicable for regulating learners' motivation. Analysis of variance showed that the profile groups with higher levels of MRS use were connected to a higher willingness to use cognitive learning strategies and a higher degree of engagement in online learning. The findings of this study emphasize the use of specific sets of MRS to support learning motivation and the need to design effective self-regulated learning environments in online medical education settings.

Trailing edge geometry effect on the aerodynamics of low-speed BWB aerial vehicles

  • Ba Zuhair, Mohammed A.
    • Advances in aircraft and spacecraft science
    • /
    • 제6권4호
    • /
    • pp.283-296
    • /
    • 2019
  • The influence of different planform parameters on the aerodynamic performance of large-scale subsonic and transonic Blended Wing Body (BWB) aircraft have gained comprehensive research in the recent years, however, it is not the case for small-size low subsonic speed Unmanned Aerial Vehicles (UAVs). The present work numerically investigates aerodynamics governing four different trailing edge geometries characterizing BWB configurations in standard flight conditions at angles of attack from $-4^{\circ}$ to $22^{\circ}$ to provide generic information that can be essential for making well-informed decisions during BWB UAV conceptual design phase. Simulation results are discussed and comparatively analyzed with useful implications for formulation of proper mission profile specific to every BWB configuration.

PREDICTIONS OF CRITICAL HEAT FLUX USING THE ASSERT-PV SUBCHANNEL CODE FOR A CANFLEX VARIANT BUNDLE

  • Onder, Ebru Nihan;Leung, Laurence Kim-Hung;Rao, Yanfei
    • Nuclear Engineering and Technology
    • /
    • 제41권7호
    • /
    • pp.969-978
    • /
    • 2009
  • The ASSERT-PV subchannel code developed by AECL has been applied as a design-assist tool to the advanced $CANDU^{(R)1}$ reactor fuel bundle. Based primarily on the $CANFLEX^{(R)2}$ fuel bundle, several geometry changes (such as element sizes and pitch-circle diameters of various element rings) were examined to optimize the dryout power and pressure-drop performances of the new fuel bundle. An experiment was performed to obtain dryout power measurements for verification of the ASSERT-PV code predictions. It was carried out using an electrically heated, Refrigerant-134a cooled, fuel bundle string simulator. The axial power profile of the simulator was uniform, while the radial power profile of the element rings was varied simulating profiles in bundles with various fuel compositions and burn-ups. Dryout power measurements are predicted closely using the ASSERT-PV code, particularly at low flows and low pressures, but are overpredicted at high flows and high pressures. The majority of data shows that dryout powers are underpredicted at low inlet-fluid temperatures but overpredicted at high inlet-fluid temperatures.

Drag Reduction Design for a Long-endurance Electric Powered UAV

  • Jin, Wonjin;Lee, Yung-Gyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권2호
    • /
    • pp.311-324
    • /
    • 2015
  • This study presents computational analyses for low-drag aerodynamic design that are applied to modify a long-endurance UAV. EAV-2 is a test-bed for a hybrid electric power system (fuel cell and solar cell) that was developed by the Korean Aerospace Research Institute (KARI) for use in future long-endurance UAVs. The computational investigation focuses on designing a wing with a reduced drag since this is the main contributor of the aerodynamic drag. The airfoil and wing aspect ratio of the least drag are defined, the fuselage configuration is modified, and raked wingtips are implemented to further reduce the profile and induced drag of EAV-2. The results indicate that the total drag was reduced by 54% relative to EAV-1, which was a small-sized version that was previously developed. In addition, static stabilities can be achieved in the longitudinal and lateral-directional by this low-drag configuration. A long-endurance flight test of 22 hours proves that the low-drag design for EAV-2 is effective and that the average power consumption is lower than the objective cruise powerof 200 Watts.

탄소저감형 다차원 도로선형설계를 위한 솔루션 알고리즘 개발 (Development of Solution Algorithm for Multi-dimention Road Alignment Design Considering Low-Carbon)

  • 강전용;심창수
    • 한국BIM학회 논문집
    • /
    • 제5권4호
    • /
    • pp.11-22
    • /
    • 2015
  • Government efforts for green growth policy initiatives demand low-carbon technologies in the road construction industry. The purpose of this paper is to develop an algorithm of a road alignment design solution for establishing the multi-dimensional information, and to calculate carbon emission quantity due to the geometric design elements in the planning phase of road alignment. The paper developed a calculation method for carbon emission quantity by drawing a speed profile reflected in the operating speed, acceleration and deceleration, which are majors factor of carbon emissions while driving and by applying a carbon emission factor. From this effort, it enabled alignment planning to reduce carbon emission. Object-based parametric design methods of the cross-sections were proposed for alignment planning, and the paper demonstrated a BIM-based road alignment planning solution. The proposed solutions can provide multi-dimensional information on carbon emission quantity and cross section elements through driving simulation. It is expected to allow construction of eco-friendly roads by deriving optimal road alignment to minimize environmental costs.

Planar Magnetic 소자를 사용한 부스트 인덕터의 최적 설계 (Optimal Design of Boost Inductor using Planar Magnetics Component)

  • 신용희;장해진;김창선;이철경;윤대영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1106-1107
    • /
    • 2007
  • Planar magnetic based design technologies have been widely applied to power design for better cooling and ease of fabrication. The planar transformer and the planar inductor have a low profile characteristics compare to the conventional transformer which would be more cubical in volume. High frequency operation of magnetic components is a main key to achieve high power density of the power module. However, at a high frequency, the skin effect and the proximity effect have to be considered very significantly in magnetic design and also the parasitics in the converter cannot be ignored. This paper deals with the design and the experiment of planar integrated magnetic component. The optimal design for planar magnetics is summarized.

  • PDF

A MPEG-4 Video Codec Chip with Low Power Scheme for Mobile Application

  • Park, Seongmo;Lee, Miyoung;Kwangki Ryoo;Hanjin Cho;Kim, Jongdae
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -2
    • /
    • pp.1288-1291
    • /
    • 2002
  • In this paper, we present a design of mpeg-4 video codec chip to reduce the power consumption using frame level clock gating and motion estimation skip scheme. It performs 30 grames/s of codec (encoding and decoding) mode with quarter-common intermediate format(QCIF) at 27MHz. A novel low-power techniques were implemented in architectural level, which is 35% of the power dissipation for a conventional CMOS design. This chip performs MPEG-4 Simple Profile Level 2(Simple@L2) and H.263 base mode. Its contains 388,885 gates, 662k bits memory, and the chip size was 9.7 mm x 9.7 mm which was fabricated using 0.35 micron 3-layers metal CMOS technology.

  • PDF

정밀정형 냉간단조 기어성형을 위한 소재처리와 다이설계 (Billet Treatment and Die Design for Net-Shape Forming of Gear by Cold Forging)

  • 강경주;박훈재;윤주철;김정;강범수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.87-90
    • /
    • 2004
  • In this paper, net-shape forming of an automobile gear is investigated. Barrel, a component of automobile start motor, is adopted as a net-shape forming. In order to accomplish the goal of net-shape forming without cutting of tooth and cam after forming, forming ability is raised through billet treatment and die design. As a technique of billet treatment spheroidizing annealing of billet to get low hardness and molybdenum disulphide coating to get low contact friction between billet and die is carried out. One of critical points of die design, fillet radii variation of tooth of die is applied to get smooth surface of barrel after cold forging. As a measurement of tooth accuracy, distance between two pins and lead-tooth alignments are investigated. Cam profile accuracy is checked with a 3D measuring instrument. Results obtained from the tests revealed reasonable result with respect to design goal. By these results, the paper shows that reasonable results can be obtained by billet treatment and die design for net-shape forming.

  • PDF

Design of a Low-Profile, High-Gain Fabry-Perot Cavity Antenna for Ku-Band Applications

  • Nguyen, Truong Khang;Park, Ikmo
    • Journal of electromagnetic engineering and science
    • /
    • 제14권3호
    • /
    • pp.306-313
    • /
    • 2014
  • A Fabry-Perot resonator cavity antenna for Ku-band application is presented in this paper. The Fabry-Perot cavity is formed by a ground plane and a frequency selective surface (FSS) made of a circular hole array. The cavity resonance is excited by a single-feed microstrip patch located inside the cavity. The measured results show that the proposed antenna has an impedance bandwidth of approximately 13% ($VSWR{\leq}2$) and a 3-dB gain bandwidth of approximately 7%. The antenna produces a maximum gain of 18.5 dBi and good radiation patterns over the entire 3-dB gain bandwidth. The antenna's very thin profile, high directivity, and single excitation feed make it promising for use in wireless and satellite communication applications in a Ku-band frequency.