• Title/Summary/Keyword: Low-pressure membrane

Search Result 237, Processing Time 0.018 seconds

Sterilization of Scoria Powder by Corona Discharge Plasma (코로나 방전 플라즈마를 이용한 화산암재 분말 살균)

  • Jo, Jin Oh;Lee, Ho Won;Mok, Young Sun
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.386-391
    • /
    • 2014
  • Atmospheric-pressure nonthermal corona discharge plasma was applied to the sterilization of biologically contaminated scoria powder. Escherichia coli (E. coli) culture solution was uniformly sprayed throughout the scoria powder for artificial inoculation, which was well mixed to ensure uniformity of the batch. The effect of the key parameters such as discharge power, treatment time, type of gas and electrode distance on the sterilization efficiency was examined and discussed. The experimental results revealed that the plasma treatment was very effective for the sterilization of scoria powder; 5-min treatment at 15 W could sterilize more than 99.9% of E. coli inoculated into the scoria powder. Increasing the discharge power, treatment time or applied voltage led to an improvement in the sterilization efficiency. The effect of type of gas on the sterilization efficiency was in order of oxygen, synthetic air (20% oxygen) and nitrogen from high to low. The inactivation of E. coli under the influence of corona discharge plasma can be explained by cell membrane erosion or etching resulting from UV and reactive oxidizing species (oxygen radical, OH radical, ozone, etc.), and the destruction of E. coli cell membrane by the physical action of numerous corona streamers.

High-Rate Biological Nitrogen Removal from Plating Wastewater using Submerged MBR Packed with Granular Sulfur (황 충진 MBR을 이용한 도금폐수의 고효율 생물학적 질소 제거)

  • Kim, Dae-young;Moon, Jin-young;Baek, Jin-uk;Hwang, Yong-woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.2
    • /
    • pp.200-208
    • /
    • 2005
  • In this study, a new submerged membrane bioreactor process packed with granular sulfur (MBR-GS) was operated to identify the biological nitrogen removal behaviors with plating wastewater containing high-strength $NO_3{^-}$ concentration. The continuous denitrification was carried out at $20^{\circ}C$ with various nitrogen loading rates using synthetic wastewater, which composed of $NO_3{^-}$ and $HCO_3{^-}$, but also actual plating wastewater, which was collected from the effluent of the H metal plating company. As a result, high-rate denitrification in the range of $0.8kg\;NO_3{^-}-N/m^3\;day$ was accomplished at nitrogen loading rate of $0.9kg\;NO_3{^-}-N/m^3\;day$ using synthetic wastewater. Also, higher-rate denitrification with actual plating wastewater was achieved up to $0.91kg\;NO_3{^-}-N/m^3\;day$ at the loading rate of $1.11kg\;NO_3{^-}-N/m^3\;day$. Additionally, continuous filtration was possible during up to 30 days without chemical cleaning in the range of 20 cmHg of transmembrane pressure. On the basis of the proposed stoichiometry, ${SO_4}^{2-}$ production could be estimated efficiently, while observed alkalinity consumption was somewhat lower than theoretical value. Consequently, a new process, MBR-GS is capable of high-rate autotrophic denitrification by compulsive flux and expected to be utilized as an alternative of renovation techniques for nitrogen removal from not only plating wastewater but also municipal wastewater with low C/N ratio.

Traumatic Coronary Artery Dissection in a Young Woman after a Kick to Her Back

  • Ipek, Emrah;Ermis, Emrah;Demirelli, Selami;Yildirim, Erkan;Yolcu, Mustafa;Sahin, Bingul Dilekci
    • Journal of Chest Surgery
    • /
    • v.48 no.4
    • /
    • pp.281-284
    • /
    • 2015
  • We present the case of a 38-year-old woman admitted to our outpatient clinic with accelerating back pain and fatigue following a kick to her back by her husband. Upon arrival, we detected ST segment elevation in the D1, aVL, and V2 leads and accelerated idioventricular rhythm. She had pallor and hypotension consistent with cardiogenic shock. We immediately performed coronary angiography and found a long dissection starting from the mid-left main coronary artery and progressing into the mid-left anterior descending (LAD) and circumflex arteries. She was then transferred to the operating room for surgery. A saphenous vein was grafted to the distal LAD. Since the patient was hypotensive under noradrenaline and dopamine infusions, she was transferred to the cardiovascular surgery intensive care unit on an extracorporeal membrane oxygenator and intra-aortic balloon pump. During follow-up, her blood pressure remained low, at approximately 60/40 mmHg, despite aggressive inotropic and mechanical support. On the second postoperative day, asystole and cardiovascular arrest quickly developed, and despite aggressive cardiopulmonary resuscitation, she died.

Fuel Cell Modeling with Output Characteristics of Boost Converter (연료전지 모델링 및 부스트 컨버터 출력 특성)

  • Park, Bong-Hee;Choi, Ju-Yeop;Choy, Ick;Lee, Sang-Cheol;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.1
    • /
    • pp.91-97
    • /
    • 2014
  • This paper proposes a modeling of fuel cell which replaces dc source during simulation. Fuel cells are electrochemical devices that convert chemical energy in fuels into electrical energy. This system has high efficiency and heat, no environmental chemical pollutions and noise. Proton exchange membrane fuel cells (PEMFC) are commonly used as a residential generator. These fuel cells have different electrical characteristics such as a low voltage and high current compared with solar cells. And there are different behaviors in the V-I curve in the temperature and pressure. Therefore, the modeling of fuel cell should consider wide voltage range and slow current response and the resulting electrical model is applied to boost converter with fuel cell as an input source.

Process Technologies of Reforming, Upgrading and Purification of Anaerobic Digestion Gas for Fuel Cells (연료전지에의 적용을 위한 혐기성 소화가스의 정제, 고질화 및 메탄개질 기술)

  • BAE, MINSOO;LEE, JONGYEON;LEE, JONGGYU
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.2
    • /
    • pp.135-143
    • /
    • 2016
  • Biogas is a renewable fuel from anaerobic digestion of organic matters such as sewage sludge, manure and food waste. Raw biogas consists mainly of methane, carbon dioxide, hydrogen sulfide, and water. Biogas may also contain other impurities such as siloxanes, halogenated hydrocarbons, aromatic hydrocarbons. Efficient power technologies such as fuel cell demand ultra-low concentration of containments in the biogas feed, imposing stringent requirements on fuel purification technology. Biogas is upgraded from pressure swing adsorption after biogas purification process which consists of water, $H_2S$ and siloxane removal. A polymer electrolyte membrane fuel cell power plant is designed to operate on reformate produced from upgraded biogas by steam reformer.

Pharmacological Actions of New Wonbang Woohwangchungsimwon Liquid on Cardiovascular System (신원방우황청심원액의 심혈관계에 관한 약효)

  • 조태순;이선미;김낙두;허인회;안형수;권광일;박석기;심상호;신대희
    • Biomolecules & Therapeutics
    • /
    • v.7 no.1
    • /
    • pp.66-78
    • /
    • 1999
  • In order to investigate the pharmacological properties of New Wonbang Woohwangchungsimwon Liquid (NSCL), effects of Wonbang Woohwangchungsimwon Liquid (SCL) and NSCL were compared. In isolated rat aorta, NSCL and SCL showed the relaxation of blood vessels in maximum contractile response to phenylephrine (10$^{-6}$ M) regardless to intact endothelium or denuded rings of the rat aorta. Furthermore, the presences of the inhibitor of NO synthase and guanylate cyclase did not affect the relaxing effect of NSCL and SCL. NSCL and SCL inhibited the vascular contractions induced by acetylcholine, prostaglandin endoperoxide or peroxide in a dose-dependent manner. In conscious spontaneously hypertensive rats (SHRs), NSCL and SCL significantly decreased heart rate. NSCL and SCL, at high doses, had a negative inotropic effect that was a decrease of left ventricular developed pressure and (-dp/dt)/(+dp/dt) in the isolated perfused rat hearts, and also decreased the contractile force and heart rate in the isolated rat right atria. In excised guinea-pig papillary muscle, NSCL and SCL had no effects on parameters of action potential such as resting membrane potential, action potential amplitude, APD$_{90}$ and V$_{max}$ at low doses, whereas inhibited the cardiac contractility at high doses. These results suggested that NSCL and SCL have weak cardiovascular effects with relaxation of blood vessels and decrease of heart rate, and that this effect is no significant differences between cardiovascular effects of two preparations.s.

  • PDF

Characteristic Study of Micro-Nozzle Performance and Thermal Transpiration Based Self Pumping in Vacuum Conditions

  • Jung, Sung-Chul;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.866-870
    • /
    • 2008
  • In this study, we designed cold gas propulsion system with minimum 0.25 mm nozzle and micro-thrust measurement system to analyze flow characteristic of micro propulsion system in ambient and vacuum condition. Argon and Nitrogen are used for propellant and the result of experiments is compared with CFD analysis and theory. But there is a point where reduced scale versions of conventional propulsion systems will no longer be practical. Therefore, a fundamentally different approach to propulsion systems was taken. That is thermal transpiration based micro propulsion system. It has no moving parts such as lubricants, pressurizing system and can pump the gaseous propellant by temperature gradient only(cold to hot). We are advancing basic research of propulsion system based on thermal transpiration in vacuum conditions and had tried experiment process and theoretical access in advance. To characterize membrane of Knudsen pump, we select Polyimide material that has low thermal conductivity(0.29 W/mK) and can stand high temperature($300^{\circ}C$) for long time. And we fabricated hole diameter 1, 0.5, 0.2, 0.1 mm using precision manufacturing. Experimental results show that pressure gradient efficiency of Knudsen pump is increased to maximum 82% according to Knudsen number and thick membranes are more effective than thin membranes in transition flow regime.

  • PDF

Influence of Bornyl Acetate on Blood Pressure and Aortic Strips Contractility of the Rat

  • Lim, Dong-Yoon;Ki, Young-Woo;Na, Gwang-Moon;Kang, Moo-Jin;Kim, Byeoung-Cheol;Kim, Ok-Min;Hong, Soon-Pyo
    • Biomolecules & Therapeutics
    • /
    • v.11 no.2
    • /
    • pp.119-125
    • /
    • 2003
  • The present study was conducted to investigate the effects of bornyl acetate on arterial blood pressure and vascular contractile responses in the normotensive rats and to establish the mechanism of action. Both phenylephrine (an adrenergi$\alpha$-receptor agonist) and high potassium (a membrane-depolarizing agent) caused greatly contractile responses in the isolated aortic strips. These phenylephrine (10$^{-5}$ M)-induced contractile responses were depressed in the presence of high concentrations of bornyl acetate (10∼20 $\mu\textrm{g}$/ml), but not affected in low concentrations of bornyl acetate (2.5∼5$\mu\textrm{g}$/ml). High potassium (5.6 ${\times}$ 10$^{-2}$ M)-induced contractile responses were also greatly inhibited in the presence of bornyl acetate (2.5∼20 $\mu\textrm{g}$/ml) in a dose-dependent fashion. Bornyl acetate (1∼10 mg/kg) given into a femoral vein of the normotensive rat produced a dose-dependent depressor response, which is transient (data not shown). Interestingly, the infusion of a moderate dose of bornyl acetate (3mg/kg/30 min) made a significant reduction in pressor responses induced by intravenous norepinephrine. Collectively, these results obtained from the present study demonstrate that intravenous bornyl acetate causes a dose-dependent depressor action in the anesthetized rat at least partly through the blockade of adrenergic $\alpha$$_1$-receptors. bornyl acetate also causes vascular relaxation in the isolated aortic strips of the rat via the blockade of adrenergic $\alpha$$_1$-receptors, in addition to the unknown mechanism of direct vasorelaxation.

Fabrication of oxide semiconductor thin film gas sensor array (산화물 반도체 박막 가스센서 어레이의 제조)

  • 이규정;김석환;허창우
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.3
    • /
    • pp.705-711
    • /
    • 2000
  • A thin film oxide semiconductor micro gas sensor array which shows only 60 mW of power consumption at an operating temperature of $300^{\circ}C$ has been fabricated using microfabrication and micromachining techniques. Excellent thermal insulation of the membrane is achieved by the use of a double-layer structure of $0.1\mum\; thick\; Si_3N_4 \;and\; 1 \mum$ thick phosphosilicate glass (PSG) prepared by low-pressure chemical-vapor deposition (LPCVD) and atmospheric-pressure chemical-vapor deposition (APCVD), respectively. The sensor array consists of such thin film oxide semiconductor sensing materials as 1 wt.% Pd-doped $SnO_2,\; 6 wt.% A1_2O_3-doped\; ZnO,\; WO_3$/ and ZnO. Baseline resistances of the four sensing materials were found to be stable after the aging for three days at $300^{\circ}C$. The thin film oxide semiconductor micro gas sensor array exhibited resistance changes usable for subsequent data processing upon exposure to various gases and the sensitivity strongly depended on the sensing layer materials.

  • PDF

Fabrication and yield improvement of oxide semiconductor thin film gas sensor array (산화물 반도체 박막 가스센서 어레이의 제조 및 수율 개선)

  • 이규정;류광렬;허창우
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.2
    • /
    • pp.315-322
    • /
    • 2002
  • A thin film oxide semiconductor micro gas sensor array which shows only 60㎽ of power consumption at an operating temperature of 30$0^{\circ}C$ has been fabricated using microfabrication and rnicrornachining techniques. Excellent thermal insulation of the membrane is achieved by the use of a double la! or structure of 0.1${\mu}{\textrm}{m}$ thick Si$_3$N$_4$ and 1${\mu}{\textrm}{m}$ thick phosphosilicate glass(PSG) prepared by low pressure chemical vapor deposition(LPCVD) and atmospheric-pressure chemical-vapor deposition(APCVD), respectively. The sensor way consists of such thin film oxide semiconductor sensing materials as 1wt.% Pd-doped SnO$_2$, 6wt.% AI$_2$O$_3$-doped ZnO, WO$_3$ and ZnO. The thin film oxide semiconductor micro gas sensor array exhibited resistance changes usable for subsequent data processing upon exposure to various gases and the sensitivity strongly depended on the sensing layer materials. Heater Part of the sensor structure has been modified in order to improve the process yield of the sensor, and as a result of modified heater structure improved process yield has been achieved.