• Title/Summary/Keyword: Low-grade heat

Search Result 120, Processing Time 0.029 seconds

Solid Oxide Fuel Cells Designs, Materials, and Applications

  • Singhal Subhash C.
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12 s.283
    • /
    • pp.777-786
    • /
    • 2005
  • The Solid Oxide Fuel Cell (SOFC) is an electrochemical device to convert chemical energy of a fuel into electricity at temperatures from about 600 to $1000^{\circ}C$. The SOFC offers certain advantages over lower temperature fuel cells, notably its ability to use CO as a fuel rather than being poisoned by it, and high grade exhaust heat for combined heat and power, or combined cycle gas turbine applications. This paper reviews the operating principle, materials for different cell and stack components, cell designs, and applications of SOFCs. Among all designs of Solid Oxide Fuel Cells (SOFCs), the most progress has been achieved with the tubular design. However, the electrical resistance of tubular SOFCs is high, and specific power output $(W/cm^2)$ and volumetric power density $(W/cm^3)$ low. Planar SOFCs, in contrast, are capable of achieving very high power densities.

Thermodynamic Performance Characterictics of a Tri-Cogeneration System Based on Kalina Cycle Driven by Renewable Energy (신재생에너지로 구동되는 칼리나 사이클 기반 삼중 병합 생산 시스템의 열역학적 성능 특성)

  • HAN, CHUL HO;KIM, KYOUNG HOON;JUNG, YOUNG GUAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.6
    • /
    • pp.649-655
    • /
    • 2021
  • The recently proposed Kalina based power and cooling cogeneration cycles (KPCCCs) have shown improvement in the energy utilization of the system compared to the basic Kalina cycle. This paper suggests a combined tri-cogeneration system for power, heating and cooling based on the Kalina cycle. And thermodynamic performances of the suggested system based on the first and second thermodynamic laws are parametrically investigated with respect to the ammonia mass fraction and the boiler pressure. Results showed that the thermodynamic performance of the system could be greatly improved compared to the former KPCCCs.

Durability Characteristics in Concrete with Ternary Blended Concrete and Low Fineness GGBFS (삼성분계 콘크리트와 저분말도 슬래그를 혼입한 콘크리트의 내구 특성)

  • Kim, Tae-Hoon;Jang, Seung-Yup;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.287-294
    • /
    • 2019
  • GGBFS(Ground Granulated Blast Furnace Slag) has been widely used in concrete for its excellent resistance chloride and chemical attack, however cracks due to hydration heat and dry shrinkage are reported. In many International Standards, GGBFS with low fineness of 3,000 grade is classified for wide commercialization and crack control. In this paper, the mechanical and durability performance of concrete were investigated through two mix proportions; One (BS) has 50% of w/b(water to binder) ratio and 60% replacement ratio with low-fineness GGBFS, and the other (TS) has 50% of w/b and 60% replacement ratio with 4000 grade and FA (Fly Ash). The strength difference between TS and BS concrete was not great from 3 day to 91 day of age, and BS showed excellent performance for chloride diffusion and carbonation resistance. Two mixtures also indicate a high durability index (more than 90.0) for freezing-thawing since they contain sufficient air content. Through improvement of strength in low fineness GGBFS concrete at early age, mass concrete with low hydration heat and high durability can be manufactured.

A Study on the optimized Performance Designing of the Window of the Apartment based on the Annual Energy Demand Analysis according to the Azimuth Angle applying the Solar Heat Gain Coefficient of the Window (창호에 SHGC를 반영한 공동주택의 방위각별 에너지 효율성 평가를 통한 합리적인 창호 계획 방안 연구)

  • Lee, Jang-bum
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.11
    • /
    • pp.25-34
    • /
    • 2019
  • It is important to design windows in a reasonable way considering the performance characteristics of the elements of the window rather than just to increase the thermal energy performance of the window. In this study, the Heat-transfer Coefficient as insulation performance of the windows and together with the grade of the glass's SHGC (Solar Heat Gain Coefficient) were analyzed to relate to the energy efficiency performance of the building by azimuth angle. Based on this basic study, the Heat-transfer Coefficient of windows and the SHGC rating of glass were applied to the unit plan of apartment building, and the Heating and Cooling Demand were analyzed by azimuth angle. Apartment plan types were divided into 2 types of Non-extension and extension of balcony. The designPH analysis data derived from the variant of the Heat-transfer Coefficient and SHGC, were put into PHPP(Passive House Planning Package) to analyze precisely the energy efficiency(Heating and Cooling Demands) of the building by azimuth angle. In addition, assuming the 'ㅁ' shape layout, energy efficiency performance and potential of PV Panel installation also were analyzed by floors and azimuth angle, reflecting the shading effects by surrounding buildings. As the results of the study, the effect of Heat Gain by SHGC was greater than Heat Loss due to the Heat-transfer Coefficient. So it is more effective to increase SHGC to satisfy the same Heating Demand, and increasing SHGC made possible to design windows with low Heat-transfer Coefficient. It was also revealed that the difference in annual Heating and Cooling Demands between the low, mid and high floor households is significantly high. In addition to it, the installation of PV Panel in the form of a shading canopy over the window reduces the Cooling Load while at the same time producing electricity, and also confirmed that absolute thermal energy efficiency could not be maximized without controlling the thermal bridge and ventilation problems as important heat loss factors.

Evaluation of Durability Performance in Concrete Incorporating Low Fineness of GGBFS (3000 Grade) (저분말도 고로슬래그 미분말(3000급)을 혼입한 콘크리트의 내구성능평가)

  • Lee, Seung-Heun;Cho, Sung-Jun;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.96-102
    • /
    • 2019
  • When GGBFS(Ground Granulated Blast Furnace Slag) with high blaine is incorporated in concrete, compressive strength in the initial period is improved, but several engineering problems arise such as heat of hydration and quality control. In this paper, compressive strength and durability performance of concrete with 3,000 Grade-low fineness slag are evaluated. Three conditions of concrete mixtures are considered considering workability, and the related durability tests are performed. Although the strength of concrete with 3,000 Grade slag is slightly lower than the OPC(Ordinary Portland Cement) concrete at the age of 28 days, but insignificant difference is observed in long-term compressive strength due to latent hydration activity. The durability performances in concrete with low fineness slag show that the resistances to carbonation and freezing/thawing action are slightly higher than those of concrete with high fineness slag, since reduced unit water content is considered in 3,000 Grade slag mixture. For the long-term age, the chloride diffusion coefficient of the 3000-grade slag mixture is reduced to 20% compared to the OPC mixture, and the excellent chloride resistance are evaluated. Compared with concrete with OPC and high fineness GGBFS, concrete with lower fineness GGBFS can keep reasonable workability and durability performance with reduced water content.

Development and Analysis of Physical Property of PP Shape Memory Fabrics for Emotional Garment (감성의류용 형상기억 PP직물 소재 개발과 물성분석)

  • Kim, Hyun-Ah;Kim, Seung-Jin
    • Science of Emotion and Sensibility
    • /
    • v.14 no.1
    • /
    • pp.117-126
    • /
    • 2011
  • This study investigates the physical properties and manufacturing method of shape memory fabric for emotional garment made by polypropylene. For this purpose, polypropylene(PP) POY and SDY were texturized using low temperature and constant length heat treatment texturing technologies, respectively. The shape memory fabrics made using these texturized PP yarns were woven with two kinds of PET and PTT shape memory yarns on the air-jet loom and the various physical properties of four kinds of shape memory fabrics were measured and discussed. The tenacity and breaking strain of PP texturized yarns treated by low temperature and constant length heat treatment showed high weaving efficiency and the wet thermal shrinkage of PP textured yarns was shown less than 1.5%, dry thermal shrinkage was ranged between 3% and 5%, which means thermal stability compared to the PTT textured yarn with high thermal shrinkage, 5~8%. The shape memory characteristics of PP shape memory fabrics measured by Toray method showed five grade as same value as PTT shape memory fabric. The heat keeping property of the PP shape memory fabric showed 56% higher value than that of PTT shape memory fabric. The water repellency of PP shape memory fabric measured by spray method showed five grade as same value as PTT shape memory fabric treated with water repellent agent. Especially, shape memory properties of PP shape memory fabric measured by 3-D image and camera measurement methods showed similar characteristics to the PTT shape memory fabric.

  • PDF

A Study on the Diffusion Behaviors in Weld Interface of Cr-Mo Steel/Austenitic Stainless Steel (Cr-Mo강/오스테나이트계 스테인리스강 용접재의 용접계면에서의 확산거동에 관한 연구)

  • 김동배;이상율;이종훈;이상용;양성철
    • Journal of Welding and Joining
    • /
    • v.17 no.4
    • /
    • pp.46-52
    • /
    • 1999
  • Some of the pressurized reactor pressure vessels used in many chemical plants are made of low alloy carbon steel plates internally clad with an austenitic stainless steel for improved anti-corrosion properties. In this study, metallurgic structure of the weld interface of A 387 Grade12Class1 low alloy carbon steel claded with A182-F321 austenitic stainless steel after thermal exposure simulation heat treatment was investigated to display a characteristic behavior of dissimilar metal weld interface with thermal exposure during service at high temperature and pressure. EPMA, STEM, vickers-hardness test were performed and the results were correlated with the microstructure. To estimate the depth of the carburized/decarburized bands quantitatively, a model for carbon diffusion was proposed. The validity of the proposed theoretical relationships was confirmed by the directly measured data from the welded parts failed during service.

  • PDF

A Comparative Analysis of the Mechanical Power from a Small LTD Heat Engine (소형 LTD 히트 엔진의 종류에 따른 기계적 출력 비교 분석)

  • Kim, Yeongmin;Kim, Wonsik;Jeong, Haejun;Chun, Wongee
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.2
    • /
    • pp.59-66
    • /
    • 2017
  • This paper compares the output power of different types of small Stirling engines in conjunction with the utilization of low grade thermal energy. A series of experimental measurements were performed to assess the output power of each engine under different conditions of the temperature difference between the hot and cold ends as well as applied weight. Results are presented in terms of torque and output power per heat transfer area. Among tested, the MM-7 engine produced the highest power of 4.455mW ($321mW/m^2$) under a temperature difference of $40^{\circ}C$.

Simulation of the effect of working fluids on the horizontal tube condenser (작동유체가 수평관형 응축기 성능에 미치는 영향에 관한 모사)

  • Jun, Yong-Du;Lee, Kum-Bae;O, Gyu-Nam;Kim, Jin-Kyong;Park, Ki-Ho;Chung, Dae-Hun
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.281-285
    • /
    • 2008
  • Effective use of available energy sources is of general concern along with the issues of global warming and unstable oil price. As one of the effort to recover waste heat from industrial facilities effectively, researchers have interest in a technology called organic Rankine cycle(ORC), in which the working fluid is some organic liquid instead of water. Known to have poor efficiency already, this old technology is considered to give an innovative solution to utilizing low grade energy sources, by improving the efficiency. Nano fluidics, coatings and the use of additives are the examples of these efforts. In the present study, we present simulated performance of a horizontal tube type condenser geometry. N-hexanr and isopentane are compared to water vapor case under 1 atm and the inet cooling water temperature of $20^{\circ}C$. EES(Engineering Equations Solver) is used for the present work.

  • PDF

The Wear Resistance of Electroless Nickel and Electroless Composite(Ni-P-X, X: SiC, $Al_2$O$_3$, Diamond) Coating Layers (무전해 니켈도금과 무전해복합도금(Ni-P-X, X: SiC, $Al_2$O$_3$, Diamond)의 내마모성 비교)

  • Kim, M.;Chang, D. Y.;Jeong, Y. S.;Ro, B. H.;Lee, K. H.
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.4
    • /
    • pp.193-206
    • /
    • 1994
  • A wear behavior of electroless (Ni-P-X, X: SiC, $Al_2O_3$, Diamond) composite coating layers, formed under various conditions on commerical grade low carbon steel, has been investigated using Taber abrasion tester and scanning electron microscope. Several factors, which are type of particles, co-deposited content, particle size, distribution of particles and heat-treatment, influenced the wear resistance. The wear resistance of the composited coating layers after heat-treatment at $400^{\circ}C$ for 1 hr was increased 70 times with diamond, 15 times with SiC and 8 times with $Al_2O_3$, compared with the electroless nickel plating layer without heat-treatment.

  • PDF