• Title/Summary/Keyword: Low-energy Building

Search Result 538, Processing Time 0.025 seconds

A Basic Study on Energy Saving of University Library - About 'H' University Building located in Sejong City - (대학도서관의 에너지 절감에 관한 기초적 연구 - 세종시에 위치한 H 대학 건물을 중심으로 -)

  • Roh, Ji Woong
    • KIEAE Journal
    • /
    • v.13 no.4
    • /
    • pp.69-74
    • /
    • 2013
  • It is difficult to apply a design standard uniformly to university buildings because various education courses are conducted. However, a design guideline for saving energy is necessary in order to prepare for low-energy days. A library in any university is one of the buildings that a lot of people use and most of the energy is spent. Therefore, the investigation on the energy savings of library facilities is very important and urgent. This study finally presents the design guideline of those facilities for low-energy. In this paper, the trend of space layout, utilization schedule and performance of materials are investigated, and the impact on energy savings and effective energy saving strategies are analyzed and illustrated by energy simulation. As a result of energy analysis from the case of 'H' university, it is confirmed that the utilization schedule effects mostly to energy consumption and the layout and orientation of the rooms in the library are the major parameters. Among the investigated saving strategies, green roofs are found as the most effective part for heating energy savings, and outdoor air cooling is known as the most effective method for cooling energy savings.

A CFD Study of Near-field Odor Dispersion around a Cubic Building from Rooftop Emissions

  • Jeong, Sang Jin
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.3
    • /
    • pp.153-164
    • /
    • 2017
  • Odor dispersion around a cubic building from rooftop odor emissions was investigated using computational fluid dynamics (CFD). The Shear Stress Transport (here after SST) $k-{\omega}$ model in FLUENT CFD code was used to simulate the flow and odor dispersion around a cubic building. The CFD simulations were performed for three different configurations of cubic buildings comprised of one building, two buildings or three buildings. Five test emission rates were assumed as 1000 OU/s, 2000 OU/s, 3000 OU/s, 4000 OU/s and 5000 OU/s, respectively. Experimental data from wind tunnels obtained by previous studies are used to validate the numerical result of an isolated cubic building. The simulated flow and concentration results of neutral stability condition were compared with the wind tunnel experiments. The profile of streamline velocity and concentration simulation results show a reasonable level of agreement with wind tunnel data. In case of a two-building configuration, the result of emission rate 1000 OU/s illustrates the same plume behavior as a one-building configuration. However, the plume tends to the cover rooftop surface and windward facet of a downstream building as the emission rate increases. In case of a three-building configuration, low emission rates (<4000 OU/s) form a similar plume zone to that of a two-building configuration. However, the addition of a third building, with an emission rate of 5000 OU/s, creates a much greater odorous plume zone on the surface of second building in comparison with a two-building configuration.

APPLICATION OF SEVERE ACCIDENT MANAGEMENT GUIDANCE IN THE MANAGEMENT OF AN SGTR ACCIDENT AT THE WOLSONG PLANTS

  • Jin, Young-Ho;Park, Soo-Yong;Song, Yong-Mann
    • Nuclear Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.63-70
    • /
    • 2009
  • A steam generator tube rupture (SGTR) accident, which is a partial reactor building bypass scenario, has a low probability and high consequences. SAMG has been used to manage the progression of severe accidents and the release of fission products induced by an SGTR at the Wolsong plants. Four of the six SAGs in the SAMG are used to manage the progression of a severe accident induced by an SGTR at the Wolsong plants. The results of the ISAAC code calculation have shown that the proper use the SAMG can stop a severe accident from progressing and keep the reactor building intact during a severe accident. These results confirm that the SAMG is an effective means of managing the progression of severe accidents initiated by an SGTR at the Wolsong plants.

Energy and Cost Efficiency on applying Solar Control Facade System (일사조절 장치 적용에 따른 에너지 및 비용효과 분석)

  • Ahn, Ki-Uhn;Kim, Seong-Jin;Kim, Dong-Hee;Moon, HyunSeok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.98-99
    • /
    • 2013
  • Recently, solar control facade systems are highlighted due to its low cost and outstanding applicability for green remodeling. However, it has not been long time since the systems were introduced. Therefore, the application study of the solar control system also has been insufficient. In this study, simulated models were developed and three types of solar control systems(i.e., overhang, blind, and screen)are installed in the models. The efficiency of energy savings and investment payback period according to the application of solar control facade system were analyzed.

  • PDF

Protection Characteristics of Two-Stage Cascade SPD Systems (2단 종속 SPD시스템의 보호특성)

  • Lee, Bok-Hee;Shin, Hee-Kyung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.5
    • /
    • pp.95-103
    • /
    • 2013
  • Protection of the electrical and electronic equipment against surges in low voltage AC power distribution systems is based on wide applications of surge protective devices(SPDs). Cascade application of SPDs located at the service entrance of a building and near sensitive equipment is intended to ensure the optimal voltage protection level and energy sharing among cascade SPDs. In this paper, when surges impinge at the service entrance of the building of interest, the protection characteristics of two-stage cascade SPD systems were investigated. The influence of the distance between the upstream and downstream SPDs on the voltage protection level and energy sharing of the two-stage cascade SPD systems were analyzed experimentally. It was found that the energy sharing of two-stage cascade SPD systems strongly depends on the distance between the two SPDs and the component of SPD. As the distance between the two SPDs increases, the energy absorbed by the upstream SPD increases while the energy absorbed by the downstream SPD decreases. Consequently, it is desirable to select the upstream and downstream SPDs having the proper energy capability with due consideration of the distance between the two SPDs.

Indoor radon and thoron from building materials: Analysis of humidity, air exchange rate, and dose assessment

  • Syuryavin, Ahmad Ciptadi;Park, Seongjin;Nirwono, Muttaqin Margo;Lee, Sang Hoon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2370-2378
    • /
    • 2020
  • Building materials contribute significantly to the indoor radon and thoron levels. Therefore, parameters that influence the exhalation rates of radon and thoron from building material need to be analyzed closely. As a preliminary study, the effects of humidity on exhalation rates were measured using a system with an accumulation chamber and RAD7 detector for Korean brick, Korean soil, and Indonesian brick. Resulting doses to a person who resides in a room constructed from the building materials were assessed by UNSCEAR method for different air exchange rates. The measurements have revealed that Korean brick exhaled the highest radon and thoron while Indonesian brick exhaled the lowest thoron. Results showed that for a typical low dense material, radon and thoron exhalation rate will increase until reached its maximum at a certain value of humidity and will remain saturated above it. Analysis on concentration and effective dose showed that radon is strongly affected by air exchange rate (ACH). This is showed by about 66 times decrease of radon dose from 0.00 h-1 to those of 0.50 h-1 ACH and decrease by a factor of 2 from 0.50 h-1 to those of 0.80 h-1. In case of thoron, the ACH doesn't have significant effects on effective dose.

A Study on the Application of Small Wind Power System in Apartment Housing (공동주택에서의 소형풍력발전시스템 적용에 관한 연구)

  • Park, Jin-Chul;Kyung, Nam-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.2
    • /
    • pp.21-34
    • /
    • 2003
  • This study aims to present the applicability of wind turbine generator system to urban buildings for the utilization of clean renewable energy. The results are as follows; According to the wind resource analysis, it has been found that small sized wind power system can be viable for buildings application due to the amplification of wind velocity around buildings or building clusters, in spite of low mean velocity of 2-3m/s in Seoul and Kyunggi urban areas. But planners must perform micrositing analysis around building so that wind turbine can be located at high velocity zones. The system must be designed to avoid obstacles preventing prevailing wind in buildings. It should be recognized that wind speeds are changing depending on the height and length from buildings. The wind power system can be used as a symbol of landmark which shows a sustainable architecture from the scenary Itself A case study for apartment building in urban showed that wind power systems can be applicable in two kinds of place, rooftops and ground levels. Especially, the wind power systems must be carefully positioned so that wind resources do not decrease when it is installed at ground levels. and according to life cycle cost analysis, adaption of new small win4 power systems to buildings were proved to produce a profit if it is considered the expense of environment improvement and the wind speed increasing according to rise of building height. This research will ultimately achieve green architecture that preserves nature and at the same time provides pleasant environment to humans, and will play a great role in establishing the environment-preserving sustainable architecture of the 21th century.

Seismic Fragility of Low-rise Piloti Buildings Designed According to KDS 41 17 00 (KDS 41 17 00에 따라 설계된 저층 필로티 건물의 지진 취약도)

  • Joo, Changhyeok;Kim, Taewan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.49-58
    • /
    • 2022
  • The 2017 Pohang earthquake caused severe damage to low-rise piloti buildings. The damage was caused mainly by column shear failure, and some core walls were as well. The damaged piloti buildings in Pohang City could be relieved if they were designed correctly according to the standards at that time. However, the post-earthquake investigation revealed design, construction, and permission problems. To solve the problems, the Piloti Building Structure Design Guidelines that include strict specifications were published in 2018. Separately, KDS 41 17 00, the seismic design standard for buildings, was enacted in 2019 and it included the guideline contents. Therefore, at least after the publication of the guidelines, piloti buildings, designed by the standard and guidelines, can be expected to possess better seismic performance than existing piloti buildings. To confirm this, the probability of exceedance for several damage state thresholds was estimated for existing and designed piloti buildings. As a result, the probability of damage of designed piloti buildings was very low compared to existing ones. Consequently, it was confirmed that the guideline and standard adequately supplement the structural fragility of existing piloti buildings.

The Evaluation of Thermal Performance of Vacuum Glazing by Composition and the Pillar Arrangement through Test Method of Thermal Resistance (단열성 시험 방법을 통한 진공유리의 구성 및 필러 배치에 따른 열 성능 평가)

  • Cho, Soo;Kim, Seok-Hyun;Eom, Jae-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.1
    • /
    • pp.61-68
    • /
    • 2015
  • The advanced counties effort to the supplement of the zero energy buildings for the global building energy saving. In the middle of the development of passive technology, the government has to effort to the energy saving of buildings by enhanced performance of the window thermal insulation. By the method of enhanced performance of window thermal insulation, the use of vacuum double glazing saves the energy consumption in building. This glazing has low U-value(heat transmission coefficient) than normal double glazing. The vacuum glazing enhanced thermal insulation performance by vacuum space of between the glass and glass. For this vacuum glazing, pillar maintain the space between glass and glass. But this structure cause the raising the heat transmission coefficient in pillar approaching glass. This study confirmed the U-value by the test method of thermal resistance for windows and doors. Also this study confirmed the variation of heat transmission coefficient by the structure of vacuum glazing. And this study measured the surface temperature of the vacuum glazing about pillar approaching glass and vacuum space in cool chamber and hot box. That result, this study confirmed U-value of $0.422W/m^2{\cdot}K$ of vacuum glazing. Also this study confirmed U-value of $0.300{\sim}0.422W/m^2{\cdot}K$ by various the structure of vacuum glazing. And this study confirmed the heat flow in pillar approaching glass.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2016 (설비공학 분야의 최근 연구 동향 : 2016년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.6
    • /
    • pp.327-340
    • /
    • 2017
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2016. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of flow, heat and mass transfer, the reduction of pollutant exhaust gas, cooling and heating, the renewable energy system and the flow around buildings. CFD schemes were used more for all research areas. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results of the long-term performance variation of the plate-type enthalpy exchange element made of paper, design optimization of an extruded-type cooling structure for reducing the weight of LED street lights, and hot plate welding of thermoplastic elastomer packing. In the area of pool boiling and condensing, the heat transfer characteristics of a finned-tube heat exchanger in a PCM (phase change material) thermal energy storage system, influence of flow boiling heat transfer on fouling phenomenon in nanofluids, and PCM at the simultaneous charging and discharging condition were studied. In the area of industrial heat exchangers, one-dimensional flow network model and porous-media model, and R245fa in a plate-shell heat exchanger were studied. (3) Various studies were published in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, subjects include mobile cold storage heat exchanger, compressor reliability, indirect refrigeration system with $CO_2$ as secondary fluid, heat pump for fuel-cell vehicle, heat recovery from hybrid drier and heat exchangers with two-port and flat tubes. In the alternative refrigeration/energy system category, subjects include membrane module for dehumidification refrigeration, desiccant-assisted low-temperature drying, regenerative evaporative cooler and ejector-assisted multi-stage evaporation. In the system control category, subjects include multi-refrigeration system control, emergency cooling of data center and variable-speed compressor control. (4) In building mechanical system research fields, fifteenth studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, renewable energies, etc. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which could be help for improving the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the analyses of indoor thermal environments controlled by portable cooler, the effects of outdoor wind pressure in airflow at high-rise buildings, window air tightness related to the filling piece shapes, stack effect in core type's office building and the development of a movable drawer-type light shelf with adjustable depth of the reflector. The subjects of building energy were worked on the energy consumption analysis in office building, the prediction of exit air temperature of horizontal geothermal heat exchanger, LS-SVM based modeling of hot water supply load for district heating system, the energy saving effect of ERV system using night purge control method and the effect of strengthened insulation level to the building heating and cooling load.